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Abstract

In recent years, the principal challenges related to the field of anes-
thesia and intensive care consist of reducing both anesthetic risks and
mortality rate, as well as providing better and more efficient assistance
to Doctors Specialized in Anesthesia (DSA).

In this paper we propose a computer aided diagnosis system aim-
ing to help doctors in the pre-anesthesia examination. The proposed
approach is based on MR-Sort, a multiple criteria decision analysis
method. In order to evaluate our algorithms, we use a local anesthetic
database composed of 898 patients. The proposed method includes
two steps. The first one is devoted to an automatic detection of ASA
(American Society of Anesthesiologists) scores. In the second step,
a decision making process is applied in order to accept or refuse the
patient for surgery. The classification results obtained by using our sys-
tem prove the reliability and the coherence of the proposed method.
In addition, the MR-Sort technique used gives good results for the two
steps and manifests a great application prospect for supporting clinic
aided diagnosis.

We assess the MR-Sort method and compare it to other machine
learning algorithms. In the paper, we also advocate the use of multiple
criteria decision analysis to obtain a model that can be explained to
doctors.

Keywords: Multiple Criteria Decision Analysis, American So-
ciety of Anesthesiologists Scores, MR-Sort, Classification.

1 Introduction

With regards to anesthesiology, assessing the patient’s physical health state
is a crucial step before deciding whether or not he can be accepted for surgery.
This information allows DSA to identify the anesthesia type and determine
the ease of the tracheal intubation. A commonly used system to determine
the patient’s health state is the ASA physical classification system, developed
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by the American Society of Anesthesiologists (ASA). It consists of classifying
patients in one of the six categories going from “healthy person” to “brain-
dead person” whose organs are being removed for donor purposes. Up to
now, the classification of a patient does not rely on a well-established and
objective method but on the subjective advice of one or several doctors. That
is why we propose in this paper a new Multiple Criteria Decision Analysis
(MCDA) method in order to determine the ASA score and the acceptance
or refusal for the patient’s surgery.

In medicine, Multiple Criteria Decision Analysis (MCDA) can be used
for various applications going from cancer diagnosis to health care settings.
Among medicine applications based on decision aid methods, we observe
that many of them are using the Analytic Hierarchical Process method. Few
of them are using other families of MCDA methods like outranking ones or
methods based on additive value function.

In anesthesiology scientific literature, very few works related to preop-
erative patient classification were carried out. In [12, 13], this concern has
been treated by using several machine learning algorithms. A drawback of
such algorithms is that they are not easily interpretable by doctors. Indeed,
these algorithms are used as blackboxes and are difficult to interpret. It
is often difficult to understand the patient classification by referring to the
algorithm parameters. For instance, with a neural network algorithm like
the multilayer perceptron, it is difficult to understand the classification by
looking at synapses values and activation functions, even more if the model
involves a lot of variables.

As far as we know and according to our research in existing literature,
there is no work dealing with multiple criteria decision analysis and ASA
physical status classification.

In this paper, we advocate the use of more interpretable models, like the
MCDA ones, as we assume that doctors prefer to be able to understand the
model leading to the classification of a patient, which can be achieved by an
easily interpretable model.

Besides, we propose the use of the MR-Sort MCDA procedure to deter-
mine the ASA score of patient evaluated on multiple criteria. We suggest to
learn the parameters of MR-Sort models on basis of a large database con-
taining information of about 898 patients evaluated on multiple criteria and
who have been classified in one of the six ASA classes. The idea behind is to
obtain a set of models that can be easily interpreted by doctors. We should
remember that our database contains only four of the six ASA score classes,
knowing that ASA scores 5 and 6 have not been collected because the plants
from which we collected our data are not included within the donating organ
ones.

This paper is organized as follows. After the introduction, we give an
overview of the existing anesthesiology scientific literature related to the
decision aided methods used in preoperative patient classification. The third
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section describes the MCDA method used in this paper, namely MR-Sort,
as well as the algorithms that allow to infer the parameters of this method.
The fourth section details experimental results that have been obtained with
the MR-Sort method in view of predicting the patients ASA score. The fifth
section presents other experimental results obtained in view of predicting
whether or not a patient can be accepted for a surgical operation. Finally,
in the last section, a set of conclusions.

2 Literature review

2.1 Multicriteria Decision Analysis in medicine

In medicine, the decision aid methods are used for various applications going
from cancer diagnosis and treatment [19, 4], to the selection of technologies
in health care settings [5]. Many medical applications are based on Analytic
Hierarchical Process (AHP). In [15] an overview of existing applications using
AHP methods is presented. However, few articles are dealing with other
MCDA methods like the ELECTRE ones. In [7], the ELECTRE TRI-C
sorting procedure is used in the context of assisted reproduction, couples
are assigned in categories which correspond to the number of embryos that
have to be transferred back to the uterus of the woman in order to obtain a
single pregnancy. To the best of our knowledge, there are no works dealing
with the multiple criteria decision analysis and ASA score determination by
using the above mentioned method while the ASA score is widely used by
all DSA’s during their pre-anesthetic examinations.

Since in medicine it is preferred to use well-know methods that allow
to explain a choice [9], we advocate in this paper the use of an outranking
model, based on MR-Sort, an ELECTRE method, and the use of an additive
value function model.

2.2 Decision Support Systems for Anesthesia

(author?) [8] proposed a probabilistic model for evaluating the surgical mor-
tality. The objective of this work is to predict the patient’s mortality after
a non-cardiac surgery, in order to diminish the operation risks. This sys-
tem calculates the risk score in an empirical way by using three descriptors,
which are the ASA score, the type of surgery either of high or intermediate
risk and whether or not the surgery is urgent. A huge database composed
of 298,772 patients has been gathered from different medical plants between
2005 and 2007, resulting as follows:

• patients with a risk score under 5 had a mortality risk under 0.5%;

• patients with a risk score between 5 and 6 had a mortality risk between
1.5% and 4%;
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• patients with a risk score over 6 had a mortality risk of more than 10%.

An automatic system capable of predicting the operation anesthetic risk
has been developed in [11]. This system assesses three classifications tech-
niques based on supervised learning. The assessment has been done by
using WEKA software for the three following classification techniques: clas-
sification and regression trees systems, neural networks and Bayesian naïve
classification. The database used contained 362 patients evaluated on 37
descriptors.

In [16], an automatic system classifying patients in different anesthetic
risk levels has been developed. A modified version of the method has been
presented in [10]. One of the descriptors used to predict the patient’s risk
level is the ASA score of the patient.

In [6], a new model was developed in view of predicting the operative
risk for the patients. The objective of this work was to predict the mortality
and the morbidity of patients on basis of the ASA classification. A database
composed of 1936 patients built on the input of two hospitals has been used
to predict the operative risks by means of a machine learning algorithm,
called logistic regression.

Several machine learning algorithms have been used in [12] in view of
predicting patients’ ASA score. In the field of anesthesia, the ASA score
is widely used in pre-anesthetic examinations. It is used to assess patients
health status before a surgical operation. Each patient is evaluated on a
scale from 1 to 6, reflecting his health status. The scale is composed of the
following 6 categories:

ASA 1 : Healthy person,

ASA 2 : Mild systemic disease,

ASA 3 : Severe systemic disease,

ASA 4 : Severe systemic disease that is a constant threat to life.

ASA 5 : A moribund person who is not expected to survive without the
surgery.

ASA 6 : A declared brain-dead person whose organs are being removed for
donor purposes.

Several supervised machine learning algorithms have been assessed in [12] in
view of predicting patients ASA scores. Results have shown that Support
Vector Machine (SVM) algorithm gives the best results.

In [13], a computer aided diagnosis system aiming to help doctors in
pre-anesthesia examination has been suggested. Five supervised machine
learning techniques have been used: SVM, Radial Basis Function (RBF),
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C4.5 decision tree classifier, K-nearest neighbor (KNN) and Multilayer Per-
ceptron (MLP). The last algorithm used in this work is the Majority Voting
which consists of assigning the patient to the category in which it has been
assigned to by a majority of the 5 others machine learning algorithms. A
database containing 898 patients evaluated on multiple attributes has been
used to evaluate the classifiers. This paper first treat the determination of
the ASA score of each patient. The second concern consisted of determining
whether or not the patients are accepted for surgery. The third one is the se-
lection of the type of anesthetic method either general or local. The last one
consists of determining whether patient’s tracheal intubation is easy or hard.
For each algorithm and each concern, a cross validation was performed. The
validation was done by splitting randomly the dataset in a learning and test
set.

In the present paper, we are interested in the determination of ASA score
and patient acceptance or refusal for surgery. We remind the main results
of [13] regarding these two cases. The attributes taken into account in order
to learn a model predicting the ASA score are given in Table 1. The table
contains the domain of each attribute and whether if it should be maximized
and/or minimized. For the determination of patient acceptance or refusal
for surgery, 3 attributes, given in Table 2, are taken into account.

Attribute Domain (Unit) Direction

Age [0-105] (year) min.
Diabetic {0,1} min.
Hypertension {0,1} min.
Respiratory failure {0,1} min.
Heart failure {0,1} min.
Heart rate [55-123] (bpm) max. min.
Heart rate steadiness {0,1} max.
Pacemaker {0,1} min.
Atrioventricular block {0,1} min.
Left ventricular hypertrophy {0,1} min.
Oxygen saturation [43-100] (%) max.
Blood glucose level [0.5-3.8] (g/l) max. min.
Systolic blood pressure [9-20.5] (cm Hg) min.
Diastolic blood pressure [5-13] (cm Hg) min.

Table 1: List of attributes taken into account in the prediction of the ASA
score in [13]

Table 3 shows the average classification accuracy of the test set for the
prediction of the ASA score and acceptation refusal of patient for surgery
when 70 % of the dataset is used as learning set. The method returning the
best results for both cases is the majority voting. It restores 93.59% of the
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Attribute Domain (Unit) Direction

ASA score [0-4] min.
Cerebrovascular accident [0-2] min.
Myocardial infarction [0-2] min.

Table 2: List of attributes taken into account in the prediction of acceptance
or refusal of a patient for surgery score in [13]

assignments for ASA score prediction and 94.07% of the assignments for the
acceptance or refusal for surgery.

Learning algorithm ASA score Acceptance/Refusal

SVM 0.8752 0.9142
C4.5 0.9154 0.9012
KNN 0.8468 0.9085
MLP 0.8927 0.9292
RBF 0.8333 0.8981
Majority Voting 0.9259 0.9407

Table 3: Average classification accuracy of the test set when 70% of the
examples of the dataset are used as learning set for the prediction of ASA
score and Acceptance/Refusal for surgery

3 Method

3.1 Majority Rule Sorting model

In order to classify patients for pre-anesthetic examination and accepting
or refusing them for surgery, we have been searching for a method using
a model that is interpretable by doctors and opt for MR-Sort, a MCDA
sorting procedure that aims at assigning each alternative of a set, evaluated
on multiple criteria, in a category selected among a set of pre-defined and
ordered categories. The method has been characterized axiomatically in [1,
2]. We consider in this paper the MR-Sort model without veto. A complete
description of the model can be found in [14, 17].

We recall the assignment rule for a model composed of 2 categories, C1

and C2 and n attributes. Categories are ordered, so that C2 is preferred to
C1. In MR-Sort, the attributes, also called criteria, should be monotonic, i.e.
the preference for an object increases or decreases as a monotonic function of
the attribute value. Each criterion has an importance that may vary. This
importance is modelled through the use of weights: an important criteria
has a bigger weight than a less important one. We denote by wj the weight
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associated to the criterion j. Usually, the weights sum up to a fixed value,
for instance 100, i.e.

∑n
j=1wj = 100.

To assign an object a either in C1 or in C2, the model compares the object
to the profile b1 delimiting the two categories. The object is assigned in C2

if it is considered at least equal or better than the profile b1. Otherwise
it is assigned in category C1. To be considered equal or better than b1,
an object should have at least equal or better performances than b1 on a
weighted majority of criteria. The weighted majority is reached when the
sum of weights in favor of the object a is equal or greater than a threshold
λ. If the majority is reached, a is assigned in C2, otherwise it is assigned in
C1. Formally, we express the assignment rule as follows:

a ∈ C1 ⇐⇒
∑

j:aj≥b1j

wj < λ

a ∈ C2 ⇐⇒
∑

j:aj≥b1j

wj ≥ λ

.
As an example, consider that the model given on Figure 1 is used to

determine whether a patient has an ASA score equal to 1 or not. The model
is built such as each criterion has the same importance: their weights are
equal on the 5 criteria. The majority threshold is set to 70. With this
setting, a patient is assigned to category ASA 1 if he is at least equal or
better than the profile delimiting the category on 4 criteria. As an example,
patient 1 represented on Figure 1 is not assigned in category ASA 1 because
he has worse performance than the profile delimiting the class ASA 1 from
the lower ones on 3 criteria. Indeed he is diabetic, he has hypertension and
his blood glucose level is higher than 0.92 cm Hg. On the contrary, patient
2 is assigned in ASA 1 because his performances are at least equal or better
than the one of the profile on 4 criteria. Patient 2 is not diabetic, he doesn’t
suffer from hypertension, his blood glucose level is not higher than 0.92 cm
Hg and his systolic blood pressure is lower than 15 cm Hg. This coalition of
4 criteria represent a sufficient majority to assign patient 2 in class ASA 1
since his profile corresponds to 80% of the weights.

For a MR-Sort model composed of p categories, an object a is assigned
in a category Ch if the two following conditions are met:

1. a is equal or better than bh−1;

2. a is not equal or better than bh.

Formally, the assignment rule writes:

a ∈ Ch ⇐⇒
∑

j:aj≥bh−1
j

wj ≥ λ and
∑

j:aj≥bhj

wj < λ (1)
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Figure 1: Criteria and categories of a fictive MR-Sort model used to deter-
mined patient ASA score.

A MR-Sort model composed of p categories and n criteria involves the
elicitation of pn+ 1 parameters, i.e. n weights, (p− 1)n profiles evaluations
and a majority threshold. Eliciting these parameters explicitly is not easy as
it involves a lot of values to determine. One often prefers to give examples
of assignments instead of explicitly eliciting the model parameters. That is
why, in the past years, several papers have been devoted to the learning of
MR-Sort models parameters on basis of assignment examples. Mixed integer
programs are proposed in [3, 14] in order to learn partially or globally the
parameters of a MR-Sort model. However these algorithms are not efficient
enough for the cases we want to deal with in this paper because they cannot
handle large data sets.

In [17], a metaheuristic has been presented in order to learn all the pa-
rameters of an MR-Sort model on basis of large set of assignment examples
and their vector of performances. The input of the algorithm is a set of
assignment examples. The output is a MR-Sort model that tends to be
compatible with as much examples as possible.
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3.2 MR-Sort for the prediction of ASA score and patient
acceptance or refusal for surgery

Compared to other machine learning algorithms, the MR-Sort rule can be
more easily interpreted. It is possible to describe the model as a set of simple
rules. In the present paper, we use the MR-Sort metaheuristic elaborated in
[17] to learn the parameters of MR-Sort models predicting the ASA score of
a patient and whether or not he is accepted for surgery. To address the two
cases, we reuse the dataset of [13] which is composed of 898 patients. Table
4 gives the repartition of the patients of the data set among the first four
ASA classes. No patient has an ASA score above 4 and a majority of them
has an ASA score below 3.

ASA score Number of instances
(proportion in percents)

ASA 1 211 (23 %)
ASA 2 396 (44 %)
ASA 3 239 (27 %)
ASA 4 52 (06 %)

Table 4: ASA data set: number of patients per ASA score

Patient status Number of instances
(proportion in percents)

Accepted 762
Refused 136

Table 5: ASA data set: number of patients accepted and refused

The ASA score of a patient is determined on basis of 14 attributes (see
Table 1). The acceptance or refusal for surgery is determined on basis of 3
attributes (see Table 2) including patient’s ASA score.

As using a MR-Sort model requires attributes which are monotone, it
implies that some attributes of Table 1 have to be modified in order to have
a monotonic scale for each attribute. Indeed, attributes “Heart rate” and
“Blood glucose level” are not monotone. The preference for these attributes
increases and then decreases as a function of the attribute value. As an
example, a person with a heart rate of 70 beats per minutes (bpm) is pre-
ferred to someone who has a heart rate of 50 bpm and to someone with a
heart rate of 100 bpm. In order to have criteria for which the preference
either increases or decreases as a function of its value, the attributes are
split in four sub-attributes: “Bradycardia”, “Tachycardia”, “Hyperglycemia”
and “Hyperglycemia”. Table 6 lists the four criteria and whether it should
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Attribute Domain (Unit) Direction

Heart rate
{

Bradycardia
Tachycardia

[50-70] (bpm) max.
[70-123] (bpm) min.

Blood glucose level
{

Hypoglycemia
Hyperglycemia

[0.5-0.92] (g/l) max.
[0.92-3.8] (g/l) min.

Table 6: Attributes split in two in order to determine of the ASA score with
a MR-Sort model

be maximized or minimized.
Attributes used to determine the acceptance or refusal of a patient for

surgery (Table 2) are all monotone. There is no need to transform any of
them.

4 Results

4.1 Quality of ASA score and acceptance prediction using
MR-Sort

To assess whether or not MR-Sort gives better results than other machine
learning algorithm, we perform a cross validation on the dataset and compare
the results to the one obtained in [13]. The cross validation is done by using
successively 30%, 50%, 70% of the database as learning set and the rest as
test set. The split between learning and test alternatives is done at random.
For a given size of learning and test sets, the cross validation is repeated 100
times, each time with different learning and test sets.

The comparison of machine learning algorithms with the MR-Sort meta-
heuristic is done by measuring two indices:

1. classification accuracy (CA): it corresponds to the proportion of alter-
natives correctly assigned among the total number of alternatives;

2. area under the curve (AUC ): it corresponds to the probability that
a classifier will class an alternative chosen at random from the lower
class higher than another alternative chosen at random from an upper
class [18].

First, we assess the ability of the MR-Sort metaheuristic to return a
model that is compatible with the highest number of examples. The results
are given in Table 7. Compared to results obtained with other machine learn-
ing algorithms, given in Table 3, we observe that the classification accuracy
with MR-Sort is significantly better. Indeed, the classification accuracy is
improved with almost 4% with MR-Sort compared to the Majority Voting al-
gorithm used in [13]. We also note that the value of the area under the curve
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is high which means that the model can efficiently discriminate alternatives
from different classes.

Learning set Test set

CA
30% 0.9862± 0.0064 0.9469± 0.0124
50% 0.9829± 0.0053 0.9553± 0.0101
70% 0.9810± 0.0045 0.9615± 0.0129

AUC
30% 0.9958± 0.0029 0.9830± 0.0067
50% 0.9950± 0.0022 0.9858± 0.0053
70% 0.9943± 0.0021 0.9878± 0.0053

Table 7: Prediction of the ASA score: average classification accuracy of the
learning and test sets for different size of learning set (30%, 50%, 70% of the
dataset)

The same experiment is done for the prediction of the patient acceptance
or refusal for surgery. Table 8 shows the results obtained with the MR-Sort
metaheuristic. We observe that the model can restore 92% of the examples.
Compared to the Majority Voting algorithm used in [13], it is about 2% less
efficient. Regarding the area under the curve, we note that the algorithm is
less efficient than for the prediction of the ASA score.

Learning set Test set

CA
30% 0.9268± 0.0121 0.9207± 0.0097
50% 0.9252± 0.0084 0.9241± 0.0092
70% 0.9259± 0.0055 0.9235± 0.0129

AUC
30% 0.7604± 0.0377 0.7509± 0.0162
50% 0.7521± 0.0235 0.7513± 0.0246
70% 0.7536± 0.0148 0.7507± 0.0346

Table 8: Prediction of Patient Acceptance/Refusal for Surgery using three
attributes for different sizes (30%, 50%, 70%) of the data set

4.2 Explaining predictions and interpretability

Machine learning algorithms often operate as black-boxes. It is difficult for
the user to interpret the resulting models. Compared to machine learning
algorithms, MR-Sort is a model whose parameters can be interpreted in
order to explain the assignments. In this subsection, we use the full ASA
data set as learning set for the MR-Sort metaheuristic in order to learn
models restoring as much examples as possible. We select one of the models
learned with the metaheuristic and describe it.
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4.2.1 Reduction of the number of attributes

To simplify the model as much as possible, we identify attributes having
the less influence in the model. Therefore, we initialize 100 instances of the
metaheuristic. Each instance is initialized at random with a population of
20 MR-Sort models. The metaheuristic is configured to run 20 times the
heuristic improving the profiles and 20 times to run the heuristic adjust-
ing the profiles. For each instance of the metaheuristic, we keep the model
restoring the highest number of assignments. After running 100 instances of
the metaheuristic, we obtain a list of 100 models. We observe that several
criteria are not used in the models found by the metaheuristic. The his-
togram given in Figure 2 shows the number of time each criterion has been
discarded among the 100 MR-Sort models. With 16 criteria, we observe that
“Bradycardia”, “Tachycardia” and “Hyperglycemia” are three attributes that
are discarded in more than 75% of the models. It shows that some criteria
do not add a lot of information for the determination of the ASA score.
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Figure 2: Number of time each criterion has been discarded among the 100
best models corresponding to the 100 instances of the metaheuristic

To simplify the model, we apply a leave-one-out procedure to remove
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Figure 3: Evolution of the classification accuracy (CA) and area under the
curve (AUC) when using 16 to 5 attributes

some attribute of the model. It consists in repeating the experiment by
removing one attribute at a time from the data set. For a data set composed
of 16 attributes, it means to repeat the experiment 16 times, each time with
another subset of 15 attributes. After applying the leave-one-out procedure,
we compute the average classification accuracy of the models for the different
subsets. Finally, we remove the attribute decreasing the less the classification
accuracy. The same procedure is repeated for 15 criteria and so on. We take
care of keeping attributes that are considered important by doctors for the
determination of the ASA score. As an example, “Oxygen saturation” is not
often used in the models but we choose to keep this criterion because doctors
consider that it is an important parameter in the determination of the ASA
score.

Plot given on Figure 3 shows the evolution of the average classification
accuracy (CA) and area under the curve (AUC) when using 16 to 5 attributes
in the model.

We observe that the classification accuracy and area under the curve
slightly decrease when attributes are removed. The difference becomes more
important when the model passes from 8 to 7 attributes and the classification
accuracy declines with more than one percent. The area under the curve
remains stable up to 7 criteria. It decreases with more than one percent
when the number of attributes goes from 7 to 6. Passing from 6 to 5 criteria
results in a decrease of more than 3 percents of the AUC.

4.2.2 MR-Sort model for the prediction of the ASA score

In agreement with doctors, we choose to keep a model using 7 attributes in
order to predict the ASA score of a patient. The attributes taken into account
are “Age”, “Diabetic”, “Hypertension”, “Oxygen saturation”, “Hyperglycemia”,
“Systole” and “Diastole”. The metaheuristic instances provide several models
having similar classification accuracy and area under the curve. Some of
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these models are given in appendix B.
Among the 100 best MR-Sort models obtained, we keep the one repre-

sented in Figure 4. This model can restore the ASA score of 96,21% of the
patients of the learning set, with an AUC equal to 98.48%. The confusion
matrix is given in Table 9.
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Figure 4: MR-Sort model for the prediction of the ASA score. Values in
parenthesis below the axis are the weights of the model.

ÂSA 1 ÂSA 2 ÂSA 3 ÂSA 4
ASA 1 202 9 0 0
ASA 2 11 382 3 0
ASA 3 6 5 228 0
ASA 4 0 0 0 52

Table 9: Prediction of patient ASA score: confusion matrix.

Using MR-Sort, patient performances are compared to the profiles de-
limiting the categories in ascending order, i.e. the comparison begins with
the profile delimiting the worst categories. To be assigned in a category, a
patient should be at least as good as the lower profile of that category and
not as good as its upper profile. In the model given in Figure 4, a patient is
as good as the profile, if his performances are at least equal to those of the
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profile on each criterion of one of these four criteria coalitions:

1. {Age, Diabetic, Hypertension};

2. {Age, Diabetic, Hyperglycemia, Oxygen saturation, Systole, Diastole};

3. {Age, Hypertension, Hyperglycemia, Oxygen saturation, Systole, Di-
astole};

4. {Diabetic, Hypertension, Hyperglycemia, Oxygen saturation, Systole,
Diastole}.

A patient is assigned to a category above ASA 4 if his performances are as
good as the performances of the profile delimiting the category ASA 3 from
ASA 4. In other words, a patient has always a score greater than 4 if he
satisfies the three following conditions:

1. he is 105 years old or younger;

2. he is not diabetic;

3. he doesn’t suffer from hypertension.

The ASA score of a patient is also greater than 4 if he satisfies two of these
conditions in conjunction with a level of oxygen saturation equal or above
93%. On the contrary, a patient who does not satisfy two of the three
conditions listed above is always assigned in category ASA 4. A patient
is assigned to a category greater than 3 if he satisfies the three following
conditions:

1. he is 82 years old or younger;

2. he is not diabetic;

3. he doesn’t suffer from hypertension.

The ASA score of a patient is also greater than 3 if he satisfies two of the
above conditions in conjunction with:

1. an oxygen saturation level equal or greater than 93%;

2. a small hyperglycemia characterized by a blood glucose level equal or
smaller than 1.10 g/l;

3. a systole level equal or smaller than 15 cm Hg;

4. a diastole level equal or smaller than 8.5 cm Hg.

Finally, a patient is always classified in category ASA 1 if the following three
conditions are met:
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1. he is 73 years old or younger;

2. he is not diabetic;

3. he doesn’t suffer from hypertension.

A patient is also assigned in ASA 1 if he satisfies two of these conditions in
conjunction with:

1. an oxygen saturation level equal or greater than 97%;

2. No hyperglycemia, characterized by a blood glucose level equal or
smaller than 0.92 g/l;

3. a systole level equal or smaller than 9.4 cm Hg;

4. a diastole level equal or smaller than 5.4 cm Hg.

4.3 MR-Sort model for the prediction of patient acceptance/re-
fusal for surgery

The acceptance or refusal of a patient for surgery is made on basis of its
performance on the three criteria listed in Table 2. As for the prediction of
the ASA score, we use the full data set as learning set to obtain a MR-Sort
model interpretable by doctors. We run the metaheuristic hundred times
to obtain a set of models. By using the 898 patients of the database as
learning set, we obtain an average classification accuracy equal to 0.9254
and an AUC equal to 0.7537. Among the 100 best models given by the
metaheuristic instances, a large majority of them are identical. We show
one of these models in Figure 5.

Following this model, a patient is accepted for surgery if he fulfills the
two following conditions:

1. his ASA score is greater than 4;

2. he hasn’t been subject to a cerebro-vascular accident or myocardial
infarction.

The confusion matrix is given in Table 10. We note that the method is
optimistic. All patients that should be accepted for surgery are correctly
classified by the model. However, the model accepts a large majority of
patients that should be refused for surgery. In the determination of patient
acceptance or refusal for surgery, the use of a MR-Sort model seems to be
less interesting than for the prediction of the ASA score.
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Figure 5: MR-Sort model for the prediction of the patient acceptance or
refusal for surgery. Values in parenthesis below the axis are the weights of
the model.

17



December 12, 2015; version 200c3ca

̂Accepted R̂efused
Accepted 762 0
Refused 67 69

Table 10: Prediction of patient acceptance/refusal for surgery: confusion
matrix.

5 Discussion

Experimentations of the previous section show that MR-Sort is efficient for
the prediction of the ASA score compared to other machine learning algo-
rithms. Moreover the MR-Sort model is by nature explainable to doctors
unlike the machine learning ones. However, for the prediction of acceptance
or refusal of a patient, we observe that MR-Sort gives less good results than
the machine learning algorithms used in [12].

In order to improve the efficiency of MR-Sort for the prediction of patient
acceptance or refusal for surgery, we consider replacing the attribute ASA
by the list of 16 attributes used to determine the ASA score of a patient.
The results of the experiments are given in Table 11. We observe that the
CA and AUC are largely improved by replacing the ASA criterion by the 16
criteria used to determine it. The model gives a CA that is up to 3 percents
better when the learning set grows. But the main difference lies in the value
of the AUC which increases from 75% with 3 criteria to 91% with 16 criteria.
Compared to the best results obtained with the machine learning algorithms
in [12], we observe a gain of more than one percent with MR-Sort.

It demonstrates that using more criteria helps to improve the quality of
the model. Using the sole ASA attribute results in a descriptive loss which
results in worse performances.

Learning set Test set

CA
30% 0.9794± 0.0086 0.9347± 0.0156
50% 0.9701± 0.0063 0.9475± 0.0113
70% 0.9668± 0.0049 0.9525± 0.0133

AUC
30% 0.9672± 0.0272 0.9129± 0.0338
50% 0.9486± 0.0267 0.9188± 0.0277
70% 0.9281± 0.0277 0.9085± 0.0377

Table 11: Prediction of Patient Acceptance/Refusal for Surgery using 18
attributes for different sizes (30%, 50%, 70%) of the data set
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6 Conclusion

The development of the medical computer-aided diagnosis system is becom-
ing today a very motivating research field. Indeed, numerous researchers
working in the field of artificial intelligence are trying to suggest interpretable
intelligent automatic systems ready to help doctors in their routine clinical
work.

The objective of this paper is to suggest a Multiple Criteria Decision
Analysis system based on the use of the MR-Sort method. This system,
which consists in the detection of the ASA score to decide whether the patient
is accepted or refused for surgery, is designed mainly for doctors specialized
in anesthesia to ease a great part of their pre-anesthetic examination.

The results obtained with MR-Sort showed an improvement of the clas-
sification accuracy compared to machine learning algorithms. The experi-
ments showed that the accuracy was improved by more than 5 percents for
the determination of the ASA score. For the prediction of patient acceptance
or refusal for surgery, we observed that MR-Sort can restore models having
a better accuracy. Moreover the MR-Sort model is easier to interpret. We
showed that the model can be described by a set of simple rules.

We conclude that the proposed methods can be practically used in pre-
anesthetic examinations for helping doctors specialized in anesthesia to as-
sess the risks for the patients. In our future works, we intend to enrich
the database by adding patients that are not often represented in it (e.g.
newborn children, patients with a pacemaker, etc.).
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A Description of the dataset

The ASA score of a patient is determined on basis of multiple attributes
which are all monotone:

1. Age of the patient, integer, to minimize. The younger the patient is,
the better it is.

2. Diabetes, binary, to minimize. A value of ’1’ indicates that the patient
is subject to diabetes. A value of ’0’ indicates the contrary. Patients
with diabetes are less preferred to patients having no diabetes.

3. Hypertension, binary, to minimize. A value of ’1’ indicates that the
patient is subject to hypertension. A value of ’0’ indicates the contrary.
Patients with hypertension are less preferred to patients having no
hypertension.

4. Respiratory failure, binary, to minimize. A value of ’1’ indicates that
the patient is subject to respiratory failure. A value of ’0’ indicates the
contrary. Patients with respiratory failure are less preferred to patient
having no respiratory failure.

5. Hearth failure, binary, to minimize. A value of ’1’ indicates that the
patient is subject to hearth failure. A value of ’0’ indicates the contrary.
Patients with hearth failure are less preferred to patients having no
hearth failure.

6. Hearth rate, integer, to minimize. The value corresponds to the average
hearth rate of the patient in beats per minute (bpm). The lower the
hearth rate of the patient, the best it is.

7. Hearth rate steadiness, binary, to maximize. A value of ’1’ indicates
that the patient has a constant hearth rate. A value of ’0’ indicates
the contrary. Patients having a constant hearth rate are preferred to
patient having an unstable hearth rate.

8. Pacemaker, binary, to minimize. A value of ’1’ indicates that the pa-
tient wears a pacemaker. A value of ’0’ indicates the contrary. Patients
having a pacemaker are less preferred to patients having no pacemaker.

9. Atrioventricular block, binary, to minimize. A value of ’1’ indicates
that the patient has an impairment of the conduction between the
atria and ventricles of the heart. Patients having an impairment are
less preferred to patients having no impairment.

10. Left ventricular hypertrophy, binary, to minimize. A value of ’1’ indi-
cates that the patient is subject to ventricular hypertrophy. A value of
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’0’ indicates the contrary. Patients having a ventricular hypertrophy
are less preferred to patients having no ventricular hypertrophy.

11. Oxygen saturation, integer, to maximize. The value corresponds to the
percentage of hemoglobin binding sites in the bloodstream occupied by
oxygen. Patients having a high level of oxygen saturation are preferred
to patients having a low level of oxygen saturation.

12. Blood glucose level, float, to minimize. The value corresponds to the
level of glucose, in grams per liter (g/l), in the blood of the patient.
Patients having a high level of glucose are often subject to diabetes
and are less preferred to patients having a low level of glucose in their
blood.

13. Systolic blood pressure, float, to minimize. The value indicates the
systolic blood pressure, in centimeters of mercury. Patients having a
high level of systolic blood pressure are often subject to hypertension
and are therefore less preferred to patients having a low level of systolic
blood pressure.

14. Diastolic blood pressure, float, to minimize. The value indicates the
diastolic blood pressure, in centimeters of mercury. Patients having a
high level of diastolic blood pressure are often subject to hypertension
and are therefore less preferred to patients having a low level of diastolic
blood pressure.

B MR-Sort models
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B.1 MR-Sort model #1
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B.1.2 Performances

Classification accuracy: 0.9621
Area Under the Curve: 0.9843

B.1.3 Minimal winning coalitions

1 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.2 MR-Sort model #2

B.2.1 Model parameters
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B.2.2 Performances

Classification accuracy: 0.9610
Area Under the Curve: 0.9847

B.2.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
2 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.3 MR-Sort model #3

B.3.1 Model parameters
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B.3.2 Performances

Classification accuracy: 0.9621
Area Under the Curve: 0.9870

B.3.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Hyperglycemia ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.4 MR-Sort model #4

B.4.1 Model parameters
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B.4.2 Performances

Classification accuracy: 0.9644
Area Under the Curve: 0.9882

B.4.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Sy s to l e ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.5 MR-Sort model #5

B.5.1 Model parameters
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B.5.2 Performances

Classification accuracy: 0.9610
Area Under the Curve: 0.9878

B.5.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
2 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.6 MR-Sort model #6

B.6.1 Model parameters
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B.6.2 Performances

Classification accuracy: 0.9610
Area Under the Curve: 0.9855

B.6.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen sa tu ra t i on ]
2 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
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B.7 MR-Sort model #7

B.7.1 Model parameters
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B.7.2 Performances

Classification accuracy: 0.9621
Area Under the Curve: 0.9884

B.7.3 Minimal winning coalitions

1 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension , D ia s to l e ]
4 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.8 MR-Sort model #8

B.8.1 Model parameters
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B.8.2 Performances

Classification accuracy: 0.9477
Area Under the Curve: 0.9791

B.8.3 Minimal winning coalitions

1 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
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B.9 MR-Sort model #9

B.9.1 Model parameters
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B.9.2 Performances

Classification accuracy: 0.9465
Area Under the Curve: 0.9671

B.9.3 Minimal winning coalitions

1 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
2 [ Age , Diabet ic , Hypertension ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
4 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Diabet ic , Hypertension , Hyperglycemia , Systo le , D ia s to l e ]
6 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.10 MR-Sort model #10

B.10.1 Model parameters
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B.10.2 Performances

Classification accuracy: 0.9621
Area Under the Curve: 0.9851

B.10.3 Minimal winning coalitions

1 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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