
Learning the parameters of a multiple criteria
sorting method from large sets of assignment

examples
Olivier Sobrie1,2,3 and Vincent Mousseau2 and Marc Pirlot3

Abstract. ELECTRE TRI is a sorting method used in mul-
tiple criteria decision analysis. It assigns each alternative, de-
scribed by a performance vector, to a category selected in a
set of pre-defined ordered categories. Consecutive categories
are separated by a profile. In a simplified version proposed
and studied by Bouyssou and Marchant and called MR-Sort,
a majority rule is used for assigning the alternatives to cate-
gories. Each alternative a is assigned to the lowest category
for which a is at least as good as the lower profile delimit-
ing this category for a majority of weighted criteria. In this
paper, a new algorithm is proposed for learning the param-
eters of this model on the basis of assignment examples. In
contrast with previous work ([7]), the present algorithm is de-
signed to deal with large learning sets. Experimental results
are presented, which assess the algorithm performances with
respect to issues like model retrieval, computational efficiency
and tolerance for error.

1 Introduction

ELECTRE TRI is a sorting method used in decision analysis
to assign each alternative to a category. The categories are
pre-defined and ordered. A simplified version, called MR-Sort
(Majority Rule Sorting method) has been studied by Bouys-
sou and Marchant (see [1, 2]). Alternatives are assigned to a
category based on a majority rule. Each category is associated
a lower profile defining its boundary with the category below.
An alternative is assigned to one of the categories above a
profile as soon as its performances are at least as good as
those of the profile for a weighted majority of criteria.

Methods for eliciting the parameters of such a sorting
method on the basis of assignment examples already exist
but are limited to relatively small datasets. The question we
are interested in is whether it is possible to use such rules in
the context of preference learning, assuming that the learn-
ing datasets consist of a large number of assignment examples.
For instance, the dataset can be composed of students’ grades
(satis bene, cum laude, magna cum laude, summa cum laude)
corresponding to their results in the different disciplines. The
goal is then to learn a MR-Sort model that assigns a grade to

1 email: olivier.sobrie@gmail.com
2 École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay
Malabry, France, email: vincent.mousseau@ecp.fr

3 Université de Mons, Faculté Polytechnique, 9, rue de Houdain,
7000 Mons, Belgium, email: marc.pirlot@umons.ac.be

a student whenever a vector of his/her results in the different
courses is entered. Learning such a model amounts to com-
pute the profiles limiting the categories, the criteria weights
and the majority threshold on the basis of a list of students,
their marks and the grade they have been assigned to by the
jury.

In [7], learning all the parameters of the MR-Sort has been
formulated as a mixed integer linear program This formula-
tion has a drawback: it is not suitable for large learning sets
since it requires computing times that grow rapidly with the
number of assignment examples.

This paper presents a metaheuristic we devised to infer all
the parameters of an MR-Sort model. It reports the results
of experiments testing the following aspects of the algorithm
performance:

Model retrieval Given a set of alternatives assigned by a
known MR-Sort model, what is the ability of the algorithm
to determine the parameters of a model assigning these
alternatives as much as possible to the same categories as
the original model?

Algorithm efficiency What is the practical complexity of
the algorithm? Is it able to deal with large learning sets?
How much time does it take to learn the parameters of a
model for a given number of categories, criteria and assign-
ment examples?

Tolerance for error The learning set given as input to
the algorithm might contain errors, e.g. alternatives that
should belong to some category considering its evaluations
could be erroneously assigned to a different category. The
question is: How does the algorithm react to learning sets
that are not entirely compatible with a MR-Sort model?
Has the algorithm the ability to correct assignment errors?

In the next section of this paper, we briefly recall the rules
of the MR-Sort procedure and which difficulties are involved
in the elicitation of its parameters. We also discuss previous
work done in view of eliciting the parameters of the MR-
Sort rule. In section 3, we present the new metaheuristic. The
experiments designed for testing it are described in section
4; our first experimental results are commented. We conclude
with some perspectives for further work in view of improving
the current version of the algorithm.

April 26, 2013; version 3718b5b

mailto:olivier.sobrie@gmail.com
mailto:vincent.mousseau@ecp.fr
mailto:marc.pirlot@umons.ac.be

2 Sorting procedure
2.1 MR-Sort model
The ELECTRE TRI procedure, originally developed in [13]
(see also [12]), aims to assign every alternative ai of a set A =
{a1, ..., am} to one of the pre-defined and ordered categories
going from C1 to Cp, with C1 the worst one and Cp the best
one. Alternatives are evaluated on a set of n criteria; ai,j
denotes the performance of ai on criterion j (F = {1, .., n}).
The criterion scales are assumed to be ordered in increasing
order of the decision maker’s preference. The assignment to a
category is done by comparing each alternative performances
to the performances of the p − 1 profiles, delimiting the p
categories, on each criterion. The profiles are denoted by bh,
h = 1, . . . , p−1 and the performance of profile h on criterion j
is bh,j . The lower boundary of category Ch is profile bh−1. For
notational convenience, we sometimes use two trivial profiles
b0 and bp. b0 (resp. bp) is the lower (resp. upper) profile of
category C1 (resp. Cp). For all j, the performance of b0 on
criterion j is the worst possible performance on this criterion,
so that every alternative is at least as good as b0 on all criteria.
bp plays a symmetric role in the sense that bh is at least as
good as every alternative on all criteria.

It is assumed that the profiles dominate each other, i.e.:

bh−1,j ≤ bh,j ≤ bh+1,j h = 1, . . . , p− 1; (1)
j = 1, . . . , p− 1.

The original procedure presents some drawbacks. In partic-
ular, it involves numerous parameters which may play inter-
related roles. Although several papers have been devoted to
learning the parameters of such a model [9, 10, 8, 11, 5, 4],
it is not advisable to use this method for learning prefer-
ences on the basis of large sets of assignment examples. In
this article we consider a version of ELECTRE TRI called
the non-compensatory sorting model. It is based on the work
of Bouyssou and Marchant who have established an axiomatic
characterization of this model in the case of two [1] or more
categories [2].

To describe the assignment rule, we need to recall the def-
inition of an outranking relation. An alternative ai outranks
a profile bh if and only if there is a sufficient coalition of
(weighted) criteria for which ai is at least as good as bh on
each criterion of the coalition, and there is no criterion on
which ai is so much worse than bh that compensating this
disadvantage is impossible. The idea that some large disad-
vantages cannot be compensated usually is called a veto; it
precludes asserting that ai outranks bh. The “at least as good”
relation Sj on criterion j can be defined for instance by:

aiSjbh ⇔ ai,j ≥ bh,j (2)

The veto relation Vj on criterion j can be defined as follows:

aiVjbh ⇔ bh,j < ai,j − vj(bh). (3)

If the sum of the weights wj of the criteria j for which ai
is at least as good as bh is larger than or equal to a majority

(or concordance) threshold λ, and if there is no criterion on
which there is a veto, then ai outranks bh.

The global outranking relation S is defined by:

aiSbh ⇔
∑

j∈S(ai,bh)

wj ≥ λ and [Not[bhVjai], ∀j ∈ F] (4)

with S(ai, bh) = {j ∈ F : aiSjbh}

With ELECTRE TRI, there are two ways to determine to
which category an alternative should be assigned: they are
called the pessimistic and the optimistic approach. We only
describe the pessimistic approach (the only one that was char-
acterized in [1, 2]) since it is the one used in the algorithm de-
scribed below. The pessimistic procedure consists in compar-
ing ai to the profiles bk for k = p−1, p−2, . . . , 1 successively;
if bh is the first profile such that aiSbh, the alternative ai is
assigned to the category Ch+1. If the alternative ai doesn’t
outrank any profile, then it is assigned to the worst category,
C1.

In this paper, we consider models without vetoes. Hence
the conditions for an alternative ai to be assigned to category
Ch can be expressed as follows:∑

j∈S(ai,bh−1)

wj ≥ λ and
∑

j∈S(ai,bh)

wj < λ (5)

As in [7], we call a model assigning alternatives to a category
using such a rule, a Majority Rule Sorting Model (MR-Sort).

2.2 Elicitation of ELECTRE TRI
parameters

Several published articles deal with learning the parameters
of a traditional ELECTRE TRI model. In [9], it is proposed
to infer the whole set of parameters of an ELECTRE TRI
model from assignment examples by using a nonlinear pro-
gramming formulation. In [8], the authors describe a way to
learn the weights of an ELECTRE TRI model with a linear
program. Article [11] deals with the inference of the profiles
from assignment examples. Once again a linear program is
used. In [6], a genetic algorithm is developed in order to learn
the whole set of parameters of a traditional ELECTRE TRI
model.

Recently, in [7], a mixed integer linear program has been
proposed to infer all the parameters of an MR-Sort model.
The linear program has been tested with 10 to 100 exam-
ples of assignments, 3 to 5 criteria and 2 to 3 categories. The
experiments made show that a large number of assignment
examples is needed to retrieve a model that represents the
preferences of the decision maker with a reasonable accuracy.
However, with the mixed integer linear program proposed in
[7], the computing time quickly grows with the number of as-
signment. In [3], three mixed linear programs are used to find
a set of weights or profiles which reflect as much as possible
the preferences of multiple decision makers.

Using the linear programs developed in [7] and [3] is not an
option in our case because we want to deal with large num-
bers of assignment examples and models having more than 5

criteria and 2 categories. The new approach proposed below
aims at dealing with such models.

3 Inferring the parameters of a MR-Sort
model

In this section we detail a new algorithm that aims to learn
the whole set of parameters of an MR-Sort model. Initially, a
set of random profiles dominating one another is generated.
The proposed algorithm is composed of two main steps:

1. Using the current profiles, find a set of weights and a ma-
jority threshold maximizing the number of assignment ex-
amples compatible with the model;

2. Adjust the profiles in order to maximize the number of
assignment examples compatible with the model.

The goal of the algorithm is to obtain the parameters of
a model reflecting as much as possible the preferences of the
decision maker, i.e. a model that restores as much as possible
the assignments of the examples given as input. To measure
the performance of the algorithm, we compute the classifi-
cation accuracy CA of the final model, which is defined as:

CA =
Number of examples correctly restored

Total number of examples
(6)

In this section, we first describe the linear program used to
learn the weights. Then we describe the metaheuristic used
to improve the position of the profiles. Finally, the coupling
of the linear program and the metaheuristic is explained.

3.1 Inferring the weights and the majority
threshold

Finding the weights and the majority threshold of an MR-Sort
model with fixed profiles doesn’t require mixed integer pro-
gramming. The problem can be easily formulated as a simple
linear program.

We denote by Ah the set of alternatives assigned by the DM
to the category Ch. As the profiles dominate each other, the
constraints for an alternative ai to be assigned to the category
Ch can be expressed as follows:

∑
∀j|aiSjbh−1

wj − xi + x′i = λ ∀ai ∈ Ah,

h = {2, ..., p− 1} (7)∑
∀j|aiSjbh

wj + yi − y′i = λ− δ ∀ai ∈ Ah,

h = {1, ..., p− 2} (8)

with:
n∑

j=1

wj = 1 (9)

λ ∈ [0.5; 1] (10)
wj ∈ [0; 1] ∀j ∈ F (11)

xi ∈ R+
0 ∀ai (12)

yi ∈ R+
0 ∀ai (13)

x′i ∈ R+
0 ∀ai (14)

y′i ∈ R+
0 ∀ai (15)

The value xi − x′i (resp. yi − y′i) represents the difference
between the sum of the weights of the criteria belonging to
coalition in favor of ai ∈ Ah w.r.t. bh−1 (resp. bh) and the
majority threshold. If both xi−x′i and yi−y′i are positive, then
the alternative ai is assigned to the right category. In order to
try to get a maximum number of compatible alternatives, the
objective function of the linear program minimizes the sum
of x′i and y′i:

min
∑
ai∈A

(x′i + y′i) (16)

However this objective function does not guarantee to return
a set of weights and a majority threshold which maximize the
number of alternatives assigned to the category indicated by
the DM. This is due to the fact that the objective function
allows for compensatory effects between constraints.

3.2 Inferring the profiles
Trying to learn the profiles using an exact method is not easy
because conditions (5) cannot be formulated as linear con-
straints. Exact methods have been proposed and studied in
[7]. They require mixed integer programming solvers. As we
want to deal with models having more than 5 criteria and 2
categories, the use of a linear program with binary variables
is not an option due to quickly exploding computing times.
Therefore we opted for developing a metaheuristic, which is
described below.

3.2.1 Idea of the metaheuristic

Consider a model with 5 criteria, 2 categories, C1 and C2 (C2

being the best and C1 the worst category). We assume that
the criteria weights are known. Let a1 and a2 be 2 misclassi-
fied alternatives (see Figure 1). The profile delimiting the two
categories is denoted by b1; b0 and b2 correspond respectively
to the worst and the best possible (fictive) alternative on the
five criteria. Imagine that a1 is wrongly assigned by the pro-
cedure to the category C2 instead of C1. This means that the
profile has too low levels on one or several criteria. In contrast,
an alternative a2 wrongly assigned to category C1 instead of
C2 means that the profile level is too high on one or several
criteria (we recall that the weights are considered as known).
On Figure 1, an arrow shows the direction in which moving

the profile in order to potentially assign the two alternatives
to the right category.

C1

C2

g1 g2 g3 g4 g5

b0

b1

b2

a1

a2

δb1,1,1
δb1,1,2

δb1,1,3 δb1,1,4

δb1,2,4
δb1,2,5

Figure 1. Alternative wrongly assigned because of the profile too
low or too high

We denote by A2
1 (resp. A1

2) the set of alternatives wrongly
classified in C2 (C1, respectively) by the inferred model while
the DM assigns them to category C1 (resp. C2). The sets
of alternatives correctly classified in C1 and C2 are denoted
respectively by A1

1 and A2
2. With a two categories model, each

alternative belongs to one of the four sets, A1
1, A1

2, A2
1 or A2

2.
An alternative belonging to A1

2 (resp. A2
1) indicates that the

profile level is too high (resp. too low) on one or several criteria
(assuming that we do not change the weights).

Regarding the relative position of the evaluation ai,j of al-
ternative ai on criterion j and the profile evaluation b1,j and
considering the assignment of the alternative, we can distin-
guish 8 cases (see Figure 2); δ1,i,j represents the distance be-
tween the profile level and the alternative evaluation on cri-
terion j.

In the 8 cases represented in Figure 2, we see that the differ-
ence between the value of the profile b1,j and the performance
of the alternative ai,j can have a positive (cases a, d, e, h) or
a negative (cases b, c, f, g) influence on the classification. We
denote byW1,j the set of alternatives wrongly assigned by the
model and for which the criterion j is not in favor of the cor-
rect assignment due to the current profile level. The set R1,j

contains the alternatives for which evaluation of b1 favors the
assignment to the right class.

W1,j =
{
ai ∈ A2

1 : ai,j ≥ b1,j
}

∪
{
ai ∈ A1

2 : ai,j < b1,j
}

(17)

R1,j =
{
ai ∈ A2

1 : ai,j < b1,j
}

∪
{
ai ∈ A1

1 : ai,j < b1,j
}

∪
{
ai ∈ A1

2 : ai,j ≥ b1,j
}

∪
{
ai ∈ A2

2 : ai,j ≥ b1,j
}

(18)

The alternatives contained in the sets W1,j and R1,j give
an indication about how the profile should be moved on crite-
rion j to potentially increase the classification accuracy of the

(a) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A2
1

(b) gj
b0,j b1,j b2,jai,j

δ1,i,j

(c) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A1
2

(d) gj
b0,j b1,j b2,jai,j

δ1,i,j

(e) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A1
1

(f) gj
b0,j b1,j b2,jai,j

δ1,i,j

(g) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A2
2

(h) gj
b0,j b1,j b2,jai,j

δ1,i,j

Figure 2. Given the evaluation of an alternative and of the profile
on a criterion j, 8 possible cases regarding the alternative assign-
ment

model. In order to assess the advantage of the different pos-
sible moves of the profile level, the space between the profiles
levels b1,j and b0,j on criterion j is split into k sub-intervals by
means of k subdivision points denoted by b−l

1,j for l = 1, . . . , k.
The same is done between b1,j and b2,j by means of k subdivi-
sion points denoted by b+l

1,j for l = 1, . . . , k. We consider these
2k subdivision points scattered on both sides of b1,j as the
candidate moves for the profile level b1,j . Then, histograms
similar to those shown in Figure 3 are constructed for each
criterion j.

The bars lengths in the first (resp. second) histogram rep-
resent the number of alternatives in the set W±l

1,j (resp. R±l
1,j)

whereW±l
1,j (resp. R

±l
1,j) denotes the set of alternatives belong-

ing to W1,j (resp. R1,j) the evaluation of which, on criterion
j, is located between the current value of the profile, b1,j , and
the potential new value, b±l

1,j . In the last histogram, the bars
lengths represent what is formally a probability P defined by:

P (b±l
1,j) =

|W±l
1,j |

|W±l
1,j |+ |R±l

1,j |
(19)

If we move the profile level b1,j to b±l
1,j , the number |W±l

1,j |
will decrease by |W±l

1,j | − |R±l
1,j | and the number |R±l

1,j | will in-
crease by the same quantity. If the quantity |W±l

1,j | − |R±l
1,j | is

positive, the number of correctly assigned alternatives with
their evaluation on the right side of the profile will tend to
increase while the profile level is moved to b±l

1,j . Of course,
the number of correctly assigned alternatives will not me-
chanically increase by |W±l

1,j | − |R±l
1,j | since the corresponding

change in the profile level only concerns criterion j. We use
the probabilities P (b±l

1,j) as indicators of the potential gain
in correct classification that can be expected from a move of
the profile level on some criterion. The probabilities associ-
ated with profile b1 on criterion j are computed and the value
L ∈ {−k, . . . ,−1, 1, . . . , k} for which the probability of bL1,j is

9
7

3 2 3 3

5
2 1

3

8 9

0.643 0.777 0.750
0.400 0.272 0.25

gjW1,j
b0,j b1,j b2,j

b+1
1,jb−1

1,j b+2
1,jb−2

1,j b+3
1,jb−3

1,j

gjR1,j
b0,j b1,j b2,j

b+1
1,jb−1

1,j b+2
1,jb−2

1,j b+3
1,jb−3

1,j

gj

|W±l
1,j |

b−3
1,j b−2

1,j b−1
1,j b+1

1,j b+2
1,j b+3

1,j

gj

|R±l
1,j |

b−3
1,j b−2

1,j b−1
1,j b+1

1,j b+2
1,j b+3

1,j

gj

P
1

b−3
1,j b−2

1,j b−1
1,j b+1

1,j b+2
1,j b+3

1,j

Figure 3. Histogram of the evaluations of misclassified alterna-
tives on criterion j

maximal is recorded. Then a random number r is drawn from
the uniform distribution on [0, 1]. If the value of r is smaller
than P (b±L

1,j), then the profile is moved to b±L
1,j , otherwise the

profile is not moved at all. The same operation is performed
for each criterion.

One loop of the metaheuristic in the case of a model
with 2 categories can be summarized by the following algo-
rithm:
for all j ∈ {1, ..., n} do
Compute P (b±l

1,j), ∀l
Find L such that P (bL1,j) = maxl(P (b±l

1,j))
Draw a random number r from the uniform distribution
[0, 1]
if r < (P (bL1,j)) then
b1,j = bL1,j

end if
end for
When there are more than two categories, a similar algo-

rithm is applied to each profile with a slightly adapted defi-

nition of W and R:

Wh,j =
{
ai ∈ Ah+1

h : bh+1,j > ai,j ≥ bh,j
}

∪
{
ai ∈ Ah

h+1 : bh−1,j < ai,j < bh,j
}

(20)

Rh,j =
{
ai ∈ Ah+1

h : bh−1,j ≤ ai,j < bh,j
}

∪
{
ai ∈ Ah

h : bh−1,j ≤ ai,j < bh,j
}

∪
{
ai ∈ Ah

h+1 : bh+1,j > ai,j ≥ bh,j
}

∪
{
ai ∈ Ah+1

h+1 : bh+1,j > ai,j ≥ bh,j
}

(21)

for h = 1, ..., p − 1. In these definitions, Al
h denotes the sub-

set of misclassified alternatives that are assigned to category
Cl by the model while the DM assigns them to category Ch.
Note that the definitions of Wh,j and Rh,j only take into ac-
count the alternatives for which the class assigned by the DM
and the model either coincide or are nearest neighbor. Defi-
nitions which take into account all misclassified alternatives
have been experimented and have led to inferior results in
terms of convergence of the algorithm.

3.2.2 Parameters setting and tactical details

In the metaheuristic outlined above, several parameters and
implementation details influence the convergence. The follow-
ing options have been chosen.

Objective function and stopping criterion In the pro-
posed algorithm, the objective function aims at maximizing
the classification accuracy of the model. The stopping cri-
terion is met once the classification accuracy is equal to 1
or when the algorithm has run for Nit loops.

Number and position of the subdivision points b±l
i,j

The interval in which the value of the profile bh can vary is
subdivided in 2k subintervals. The number k and the way
of subdividing the interval (equal vs. unequal subintervals)
must be specified.

Probability function In the present version, the probabil-
ity (19) only takes into account the number of alternatives
rightly or wrongly assigned to one of the two categories
neighboring the profile.

Treatment order of the profiles When there are more
than two categories, we have to specify the order in which
the algorithm handles the profiles. In this paper, they are
treated in ascending order of their labels, i.e. b1, b2, ...,
bp−1.

3.3 Inferring all the parameters
To infer all the parameters of the MR-Sort procedure, the lin-
ear program and the metaheuristic, described in the previous
paragraphs, are combined.

First, a set of Nmod MR-Sort models is generated. Each
model is initialized with a set of random profiles. Then, for
each model, the following two operations are repeated at most
No times:

1. Given the current profiles, the weights and a majority
threshold are learned by using the linear program.

2. Given the current values of the weights and the threshold,
the profiles are improved by running the metaheuristic Nit

times. The classification accuracy CA, is computed after
each loop. After the Nit loops, the profiles giving the best
CA are kept.

After the 2 steps learning procedure has been applied to the
Nmod models, the algorithm keeps only the Nmod/2 models
giving the best CA and Nmod/2 new models are randomly
generated. The algorithm is stopped once a model has a CA
equal to 1 or when the algorithm has run No times.

4 Experimentations
In this section, we address the validation issues presented in
the introduction, i.e. model retrieval, algorithm efficiency and
tolerance for errors. We successively test the linear program
used to infer the weights and the majority threshold, the
metaheuristic used to infer the profiles and the metaheuristic
allowing to infer the whole set of parameters.

To test the algorithm partially and globally, we use a com-
mon testing procedure:

1. A random MR-Sort modelM is generated. It is determined
by a set of weights, normalized to 1, a set of profiles with
evaluations on the n criteria between 0 and 1 and a majority
threshold whose value is picked in the interval [0.5, 1]. All
values are drawn from uniform distributions. Using model
M as described by (5), each alternative can be assigned to
a category. The resulting assignment rule is referred to as
sM .

2. A set of m alternatives with random performances on the
n criteria is generated. The performance values are drawn
uniformly and independently from the [0, 1] interval. The
set of generated alternatives is denoted by A. The alter-
natives in A are assigned using the rule sM . The resulting
assignments and the performances of the alternatives in the
set A are given as input to the algorithm. They constitute
the learning set.

3. In case we only infer part of the parameters of the rule, the
other parameters are given as input to the algorithm, e.g.
for the inference of the profiles, the weights and the major-
ity threshold are given as input. Then the algorithm runs
and tries to maximize the number of assignments compat-
ible with the output resulting from step 2. The resulting
model is denoted by M ′. The alternatives in the set A are
assigned to a category by the model M ′. Formally, the as-
signment rule is denoted by sM′ . We compute the classifi-
cation accuracy CA(sM , sM′) according to Equation 6, i.e.

CA(sM , sM′) =
|{a∈A:sM (a)=sM′ (a)}|

|A| .

The last step allows to study the efficiency of the algorithm
either by examining the computing time needed to learn the
parameters or by observing the algorithm convergence behav-
ior. In order to answer to the two other questions posed in the
introduction, additional steps are required:

4. After learning the parameters, a set of 10000 alternatives
with random performances (drawn independently from the
uniform distribution in the [0, 1] interval) is generated. It is
denoted by B. This set is used in the generalization phase.

5. The alternatives contained in the set B are assigned using
rules sM and s′M and the classification accuracy of model
M ′ is computed.

These two steps allow us to address the model retrieval is-
sue. To see how the algorithm behaves when the learning set
contains errors, an additional step is needed:

2’ A proportion of error is added in the assignment resulting
from rule sM . We denote by s̃M the rule producing the
assignments with errors.

After learning the parameters of the MR-Sort model, two val-
ues of classification accuracy can be computed to analyze the
algorithm behavior in the presence of errors. On the one hand,
the value CA(sM , sM′) gives an indication on the ability of
the algorithm to correct the errors in assignment examples.
On the other hand, the value CA(s̃M , sM′) gives an indication
on the ability of the algorithm at finding a model fitting the
learning set given as input.

The experimentations presented are made on an Intel Core
2 P8700 PC running Gentoo Linux, CPLEX version 12 and
Python 2.7.2. All experiments are repeated on 10 random in-
stances and the values displayed in the graphics below are
averages over these 10 instances.

4.1 Inference of the weights and majority
threshold

4.1.1 Computing time

To see how much time is needed to learn the weights and the
majority threshold, the linear program, described in subsec-
tion 3.1 is tested for models with 3 categories and 5, 7, 10
or 20 criteria with 1000 to 10000 assignment examples. The
profiles that are used are the correct ones, i.e. those used in
the rule sM that assigns the alternatives in the learning set.

Solving large continuous variables linear programs using a
solver like CPLEX can be done very efficiently. However, a
pre-treatment of the linear constraints is required in order to
reduce the computing time needed to encode the constraints
into the solver. The pre-processing consists in consists in fil-
tering the constraints 7 in view of eliminating the redundant
ones.

The experimental results are displayed in Figure 4. It shows
that less than 1 second is needed to learn the parameters of
a model having 3 categories and 10 criteria, even when the
learning set is as large as 10000 alternatives. However we see
that the computing time increases with the number of crite-
ria. This is due to the fact that the number of non-redundant
constraints quickly grows when the number of criteria is in-
creased.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

10−1

100

101

Number of learning examples

T
im

e
(i
n
se
co
n
d
s)

5 criteria
7 criteria
10 criteria
20 criteria

Figure 4. Computing time for learning the weights and the ma-
jority threshold of a model with 3 categories and 5, 7, 10 or 20
criteria

4.1.2 Model retrieval

What is the number of alternatives needed to obtain a good
set of weights and majority threshold for a model with a given
number of categories and criteria (assuming that we start with
the right profiles)?

The algorithm is tested on 3 categories and 10 criteria mod-
els with learning sets involving 100 to 1000 assignment exam-
ples. The inferred model (sM′) is used “in generalization” to
assign 10000 randomly generated alternatives. These assign-
ments are compared with those made by the original rule
(sM), yielding an assessment of the classification accuracy.
The evolution of the classification accuracy is shown on Fig-
ure 5.

100 200 300 400 500 600 700 800 900 1,000

92

94

96

98

100

Number of aassignment examples

C
A

of
th
e
ge
n
er
al
iz
at
io
n
se
t
(i
n
%
)

3 categories - 10 criteria

Figure 5. Evolution of the classification accuracy of models hav-
ing 3 categories and 10 criteria when the learning set contains 100
to 1000 alternatives

As we can see from the plot, the linear program returns
weights and a threshold that allow to assign the alternatives
in a similar way as the original model even for relatively small
learning sets. The classification accuracy is above 95 % for 200
assignment examples; it quickly reaches a classification accu-
racy close to 100 % when the number of alternatives increases.

4.1.3 Tolerance for error

Starting with learning sets in which the alternatives have been
assigned according to rule sM , we introduce random assign-
ment errors. More precisely, a certain proportion of the alter-
natives are reassigned to another category chosen uniformly
at random among all the other categories. We investigate how
the algorithm reacts.

The algorithm for learning the weights and a threshold is
tested on 3 categories and 10 criteria models when a pro-
portion of 5 to 40 % of assignment errors are introduced in
learning sets composed of 1000 assignment examples. Once
the parameters have been learned, we compare the original
model and the learned one on the manner they assign the
alternatives in the learning set.

Figure 6 displays the average, minimal and maximal values
of the classification accuracy obtained for learning sets con-
taining 5 to 40 % of erroneous assignments. Since the num-
ber of assignment errors made by the learned model usually
is smaller than the number of assignment errors introduced
in the learning set, we conclude that the algorithm selects
weights and a threshold in such a way that some of the errors
introduced in the learning set are corrected, thus obtaining a
classification accuracy CA(sM , sM′) that is generally better
than 100 % minus the assignment error rate in the learning
set.

5 10 15 20 25 30 35 40

0

10

20

30

40

Incompatible examples in the learning set (in %)

E
rr
or
s
in

th
e
le
ar
n
in
g
se
t
(i
n
%
)

1000 examples; 3 categories; 10 criteria

Figure 6. Evolution of the number of assignment errors made
by the learned model for the alternatives in the learning set. The
original model has 3 categories and 10 criteria and the learning set
contains 5 to 40 % of erroneous assignments

A further issue is the following. Are the alternatives wrongly
assigned by the learned model mostly alternatives that have
been erroneously reassigned to introduce terrors in the learn-
ing set? Or, on the opposite, does the learned model cre-
ate many new assignment errors? In the set of alterna-
tives wrongly assigned with the learned weights and major-
ity threshold, what’s the percentage of alternatives that were
degraded in this set? By looking in the set of alternatives
incorrectly assigned by the function sM′ , we see that these al-
ternatives are mainly ones that were not errors. For instance,
in a case in which the learning set is composed of 1000 alter-
natives, erroneously assigned for 10% of them, among the 5%

of errors obtained by assigning the alternatives of the learning
set by means ofM ′, only 0.5% correspond to errors introduced
in the learning set. We conclude that the algorithm is able to
correct introduced assignment errors, but will in general cre-
ate other errors.

4.2 Inference of the profiles
4.2.1 Strategy for moving the profiles

As emphasized in section 3.2.2, the convergence of the algo-
rithm is influenced by several parameters. Among these, we
now focus on the size of the intervals and the number of in-
tervals determining the possible moves for the profiles. We
present the evolution of the classification accuracy in con-
nection with 3 different strategies for defining the potential
profiles moves.

1. Equally spaced subdivisions between the profiles.

b+l
h,j = bh,j +

l

k
· (bh+1,j − bh,j) (22)

b−l
h,j = bh,j − l

k
· (bh,j − bh−1,j) (23)

with k the number of sub-intervals and l ∈ {1, ...k}.
2. Spacing between two subdivisions increasing as a function

of the distance to the profile.

b+l
h,j = bh,j +

el∑k
i=1 e

i
· (bh+1,j − bh,j) (24)

b−l
h,j = bh,j − el∑k

i=1 e
i
· (bh,j − bh−1,j) (25)

3. Spacing between subdivisions increasing as a function of
the distance to the profile; Number of intervals increasing
as a function of the classification accuracy of the model.

We see on Figure 7 that the third strategy guarantees a
faster convergence. It is the one that is used in the rest of the
experimentations.

0 50 100 150 200 250 300 350 400 450 500

70

80

90

100

Number of loops

C
A

of
th
e
le
ar
n
in
g
se
t
(i
n
%
)

Strategy 1
Strategy 2
Strategy 3

Figure 7. Evolution of the classification accuracy for 3 categories
and 10 criteria models, depending on the strategy adopted for mov-
ing the profiles

4.2.2 Model retrieval

The experiments are made on models having 3 categories and
10 criteria. Using the right weights and threshold (those of
model M), the profiles are learned on the basis of learning
sets involving from 100 up to 1000 assignment examples. The
resulting model M ′ is then used to assign 10000 randomly
generated alternatives. Their assignment by M ′ is then com-
pared with their assignment using M . The average, minimal
and maximal values of the classification accuracy for the 10
instances are plotted on Figure 8.

1,000900800700600500400300200100

80

90

100

Number of assignment examples

C
A

o
f
th
e
g
en
er
al
iz
at
io
n
se
t
(i
n
%
)

3 categories - 10 criteria

Figure 8. Evolution of the classification accuracy in generaliza-
tion (10000 alternatives) for models having 3 categories and 10
criteria; size of learning set: 100 up to 1000 alternatives

With 1000 alternatives in the learning set, the classification
accuracy of the alternatives contained in the generalization set
is on average close to 100 %. Unlike the linear program used to
find the weights and the majority threshold, the metaheuristic
requires more examples to return an appropriate set of pro-
files. This can be explained on the one hand by the number of
parameters to be determined is larger (when there are more
than two categories) and on the other hand by the fact that
the metaheuristic can remain stuck in a local minimum.

4.2.3 Tolerance for error

Experiments are made on models having 3 categories and 10
criteria; the learning set involves 1000 alternatives. A pro-
portion of random erroneous reassignments is applied to the
learning set. ModelM ′ is learned on the basis of this corrupted
learning set and then, the assignments of the alternatives in
the learning set by modelM ′ are compared to those produced
by the corrupted rule s̃M . Figure 9 indicates that the percent-
age of errors obtained after assigning the alternatives through
the learned model tends to be higher than the percentage of
errors introduced in the learning set.

In the case of learning sets with 10% of introduced errors,
the classification accuracy CA(s̃M , sM′) is more or less equal
to 85% after 50 loops of the algorithm. Looking at the 15%
of alternatives erroneously assigned, we observe that 9.5% are
alternatives that have been reassigned (i.e. belong to the as-
signment errors introduced in the learning set). This indicates

0 50 100 150 200 250 300 350 400 450 500

50

60

70

80

Number of loops

C
A

o
f
th
e
le
a
rn
in
g
se
t
(i
n
%
)

10 % of errors

20 % of errors

30 % of errors

Figure 9. Evolution of the classification accuracy w.r.t. the er-
roneous learning set (CA(s̃M , sM′)) used to learn the profiles of
models having 3 categories and 10 criteria with 1000 learning al-
ternatives containing 10 to 30 % of incompatible assignments

that the algorithm has the ability to identify wrong assign-
ments and adjust the parameters on the basis of the learning
examples which are not corrupted. However, the algorithm
also introduces some additional errors while assigning the al-
ternatives in the learning set.

The observations just made let us expect good results in
generalization, as the learned model M ′ seems to be close to
the original–uncorrupted–model M . To challenge this feeling,
we compare the assignments obtained by the learned model
M ′ and the original model M on a set of 10000 randomly
generated alternatives.

Figure 10 shows that the metaheuristic has a good capacity
to retrieve assignment examples even in the presence of errors
in the learning set. For instance, with 10 % of errors in the
learning set, the model learned by means of the algorithm cor-
rectly assigns 97.5 % of the alternatives in the generalization
set.

5 10 15 20 25 30 35 40

0

5

10

15

20

Incompatible examples in the learning set (in %)

E
rr
or
s
in

th
e
ge
n
er
al
iz
at
io
n
se
t
(i
n
%
)

1000 assignment examples; 3 categories; 10 criteria

Figure 10. Evolution of the classification errors in the general-
ization set (10000 alternatives) after learning the profiles of models
having 3 categories and 10 criteria on the basis of a set of 1000
assignment examples containing 5 to 40 % assignment errors

4.3 Inference of all parameters
For the inference of the whole set of parameters, the same
experiments as for the partial inferences have been performed.

4.3.1 Convergence of the algorithm

Our first concern is to study the convergence behavior of the
combined algorithm. The program described for the inference
of all parameters of a MR-Sort model is tested for models
having 3 categories and 10 criteria. The algorithm is run 100
times (No = 100) on a population of 10 models (Nmod =
10). For each loop, the linear program is run once and the
metaheuristic 20 times (Nit).

Figure 11 displays the average classification accuracy of the
alternatives in the learning set after each loop. We observe
that the strongest improvement in the classification accuracy
is obtained during the first iteration. It is then not needed
to run the algorithm for too long because the gain in clas-
sification accuracy will not be substantial. In the example
presented, 10 iterations of the combined algorithm appears to
be sufficient.

0 5 10 15 20 25 30 35 40 45 50

60

70

80

90

100

Number of loops

C
A

of
th
e
le
ar
n
in
g
se
t
(i
n
%
)

3 categories; 10 criteria

Figure 11. Evolution of the classification accuracy of the alter-
natives in the learning set used to learn the profiles of a model
having 3 categories and 10 criteria with 1000 assignment examples
(Nmod = 10;No = 100;Nit = 20)

4.3.2 Model retrieval

How many examples should we consider in the learning set in
order to be able to infer a model that gives a fair represen-
tation of the decision maker’s preferences? The experimenta-
tion is performed for 3 categories and 10 criteria models. The
learning sets involve from 100 up to 1000 assignment exam-
ples. We study the classification accuracy of the learned model
M ′ by comparing the assignments of 10000 randomly gener-
ated alternatives. Figure 12 shows the classification accuracy
CA(sM , sM′) in generalization.

The plot shows us that the learned model is tuned precisely
enough to produce a classification accuracy superior to 90 %
on average when at least 300 assignment examples are used.
As expected, the larger the number of assignment examples
used as input, the more precise the model.

1,000900800700600500400300200100
80

85

90

95

100

Number of assignment examples

C
A

o
f
th
e
g
en
er
al
iz
a
ti
o
n
se
t
(i
n
%
)

3 categories - 10 criteria

Figure 12. Evolution of the classification accuracy on the gener-
alization set. A 3 categories and 10 criteria model has been learned
on the basis of learning sets containing from 100 up to 1000 assign-
ment examples (Nmod = 10;No = 100;Nit = 20)

4.3.3 Tolerance for error

We also want to know the capacity of the algorithm to return
appropriate values for the parameters when the learning set
contains erroneous assignments. The experimental setting is
the same as before.

Using the learned model M ′ to assign the examples in the
learning set yields the results displayed on Figure 13.

0 1 2 3 4 5 6 7 8 9 10

40

50

60

70

80

90

Number of loops

C
A

of
th
e
le
a
rn
in
g
se
t
(i
n
%
)

10 % of errors

20 % of errors

30 % of errors

40 % of errors

Figure 13. Evolution of the classification accuracy
(CA(s̃M , sM′)) for the alternatives in the learning set. A 3
categories and 10 criteria model is inferred on the basis of
1000 assignment examples containing 10 to 30 % of errors
(Nmod = 10;No = 100;Nit = 20)

We see that the classification accuracy reflects the percent-
age of errors in the learning set. For 10 % of errors in the
learning set given in input, the classification accuracy of the
learning set after learning the model stays between 85 % and
90 %.

To assess the ability of the algorithm to identify incorrectly
assigned alternatives, we study its behavior in generalization
by randomly generating 10000 alternatives and comparing
their assignment by the original model M and the learned
model M ′. The results are shown on Figure 14.

5 10 15 20 25 30 35 40

0

5

10

15

20

25

Incompatible examples in the learning set (in %)

E
rr
o
rs

in
th
e
g
en
er
a
li
za
ti
o
n
se
t
(i
n
%
)

1000 assignment examples; 3 categories; 10 criteria

Figure 14. Evolution of the classification errors on the general-
ization set (10000 alternatives) after learning the whole set of pa-
rameters on the basis 1000 assignment examples (Nmod = 10;No =

100;Nit = 20)

The percentage of errors in the learning set is on average
attenuated by the metaheuristic. For instance with 20 % of
errors in the learning set, the average error is around 8 % in
the generalization set with the learned model. However, the
metaheuristic sometimes returns models producing a percent-
age of assignment errors superior to the error rate imposed on
the learning set. For instance, with 5 % of errors in the learn-
ing set, the metaheuristic returned once 10 % of errors in the
generalization set. This demonstrates that there is still room
for improving the algorithm, which may currently fail to con-
verge to a learned model sufficiently close to the original one.

5 Conclusion and further research issues

In this article we presented a new metaheuristic to learn the
whole set of parameters of an MR-Sort procedure. Several
experiments have been performed for testing the behavior of
the metaheuristic when large learning sets are used as input.

In the experimentations, we observed that we can obtain
good results for reasonably complex models i.e. typically those
involving 3 categories and 10 criteria. The metaheuristic can
retrieve the parameters of such models from 500 assignment
examples with a classification accuracy close to 95 %. When
the assignment of the examples in the learning set is not fully
compatible with a MR-Sort model, the metaheuristic is still
able to return a reasonable approximation of the “true” model
by an adequate MR-Sort model. In generalization, we saw
that the percentage of assignment errors made by the learned
model is smaller than the percentage of assignment errors
introduced the learning set.

However, the experiments have also shown that additional
work is needed to improve the algorithm behavior in some
cases. When there are no assignment errors in the learning
set, it happens that the metaheuristic used for learning the
profiles does not converge towards a classification accuracy
of 100 % even after more than 500 loops. Several tactical op-
tions for implementing the metaheuristic have been presented
in section 3.2.2 but only two of them have been studied. Other

parameters like the probability function used for choosing the
profiles moves deserve to be studied in the perspective of im-
proving the algorithm performance.

This paper does not cover the case of a MR-Sort model with
vetoes as described in section 2.1. Learning the parameters of
such model is another challenge.

REFERENCES
[1] Bouyssou, D., Marchant, T.: An axiomatic approach to non-

compensatory sorting methods in MCDM, I: The case of two
categories. European Journal of Operational Research 178(1),
217–245 (2007)

[2] Bouyssou, D., Marchant, T.: An axiomatic approach to non-
compensatory sorting methods in MCDM, II: More than two
categories. European Journal of Operational Research 178(1),
246–276 (2007)

[3] Cailloux, O., Meyer, P., Mousseau, V.: Eliciting ELECTRE
TRI category limits for a group of decision makers. European
Journal of Operational Research 223(1), 133–140 (2012)

[4] Dias, L., Mousseau, V.: Inferring Electre’s veto-related pa-
rameters from outranking examples. European Journal of Op-
erational Research 170(1), 172–191 (2006)

[5] Dias, L., Mousseau, V., Figueira, J., Clímaco, J.: An aggre-
gation/disaggregation approach to obtain robust conclusions
with ELECTRE TRI. European Journal of Operational Re-
search 138(1), 332–348 (2002)

[6] Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.:
An evolutionary approach to construction of outranking mod-
els for multicriteria classification: The case of the ELEC-
TRE TRI method. European Journal of Operational Research
199(2), 496–505 (2009)

[7] Leroy, A., Mousseau, V., Pirlot, M.: Learning the parame-
ters of a multiple criteria sorting method. In: Brafman, R.,
Roberts, F., Tsoukiàs, A. (eds.) Algorithmic Decision Theory,
Lecture Notes in Computer Science, vol. 6992, pp. 219–233.
Springer Berlin / Heidelberg (2011)

[8] Mousseau, V., Figueira, J., Naux, J.P.: Using assignment ex-
amples to infer weights for ELECTRE TRI method: Some
experimental results. European Journal of Operational Re-
search 130(1), 263–275 (2001)

[9] Mousseau, V., Slowinski, R.: Inferring an ELECTRE TRI
model from assignment examples. Journal of Global Opti-
mization 12(1), 157–174 (1998)

[10] Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented
implementation of the ELECTRE TRI method integrating
preference elicitation support. Computers & OR 27(7-8), 757–
777 (2000)

[11] Ngo The, A., Mousseau, V.: Using assignment examples to
infer category limits for the ELECTRE TRI method. Journal
of Multi-criteria Decision Analysis 11(1), 29–43 (2002)

[12] Roy, B., Bouyssou, D.: Aide multicritère à la décision: méth-
odes et cas. Economica Paris (1993)

[13] Yu, W.: Aide multicritère à la décision dans le cadre de la
problématique du tri: méthodes et applications. Ph.D. thesis,
LAMSADE, Université Paris Dauphine, Paris (1992)

	1 Introduction
	2 Sorting procedure
	2.1 MR-Sort model
	2.2 Elicitation of ELECTRE TRI parameters

	3 Inferring the parameters of a MR-Sort model
	3.1 Inferring the weights and the majority threshold
	3.2 Inferring the profiles
	3.2.1 Idea of the metaheuristic
	3.2.2 Parameters setting and tactical details

	3.3 Inferring all the parameters

	4 Experimentations
	4.1 Inference of the weights and majority threshold
	4.1.1 Computing time
	4.1.2 Model retrieval
	4.1.3 Tolerance for error

	4.2 Inference of the profiles
	4.2.1 Strategy for moving the profiles
	4.2.2 Model retrieval
	4.2.3 Tolerance for error

	4.3 Inference of all parameters
	4.3.1 Convergence of the algorithm
	4.3.2 Model retrieval
	4.3.3 Tolerance for error

	5 Conclusion and further research issues

