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Abstract. Certain sorting procedures derived from ELEC-
TRE TRI such as MR-Sort or the Non-Compensatory Sorting
(NCS model) model rely on a rule of the type: if an object is
better than a profile on a “sufficient coalition” of criteria, this
object is assigned to a category above this profile. In some
cases the strength a coalition can be numerically represented
by the sum of weights attached to the criteria and a coalition
is sufficient if its strength passes some threshold. This is the
type of rule used in the MR-Sort method. In more general
models such as Capacitive-MR-Sort or NCS model, criteria
are allowed to interact and a capacity is needed to model the
strength of a coalition. In this contribution, we want to in-
vestigate the gap of expressivity between the two models. In
this view, we explicitly generate a list of all possible families
of sufficient coalitions for a number of criteria up to 6. We
also categorize them according to the degree of additivity of
a capacity that can model their strength. Our goal is twofold:
being able to draw a sorting rule at random and having at
disposal examples in view of supporting a theoretical investi-
gation of the families of sufficient coalitions.

1 Introduction

A sorting method, in Multiple Criteria Decision Analysis, is
a procedure for assigning objects (or alternatives) described
by their evaluation on several criteria to ordered categories.
ELECTRE TRI [17, 10] is a sorting method based on an out-
ranking relation. Basically, each category has a lower limit
profile which is also the upper limit profile of the category
below. An object is assigned to a category if it outranks the
lower limit profile of this category but does not outrank its
upper limit profile. MR-Sort is a simple version of ELECTRE
TRI. MR-Sort assigns an object to a category if its evalua-
tions are better than the value of the lower limit profiles on a
majority of criteria and this condition is not fulfilled with re-
spect to the upper limit profile of the category. More precisely,
a weight wi is attached to each criterion i = 1, 2, . . . , n and
the object a = (a1, a2, . . . , an) is assigned to a category above
profile b = (b1, b2, . . . , bn) whenever the sum of the weights
of the criteria for which ai ≥ bi passes some threshold λ.
Otherwise, it is assigned to a category below b.
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An intermediary sorting method in between ELECTRE
TRI and MR-Sort was proposed and characterized by Bouys-
sou and Marchant [1, 2]. It is known as the Non Compensatory
Sorting (NCS) model. Consider the simple case in which there
are only two categories (e.g. good vs. bad) and no veto. In
such a case, an object is assigned to the category “good” if it
is better than the lower limit profile of this category on a suf-
ficient coalition of criteria. How do they define the “sufficient
coalitions of criteria”? Basically, these can be any collection of
criteria with the following property: a coalition that contains
a sufficient coalition of criteria is itself sufficient.

We claimed that MR-Sort is a particular case of a NCS
model. Indeed, with MR-Sort, a set of criteria is a sufficient
coalition iff the sum of the weights of the criteria in the set is
at least as large as the threshold λ. To fix the ideas consider
the following example. A student has to take 4 exams to be
admitted in a school. To be successful, he has to take a mark
of at least twelve (over twenty) in each of these exams, with at
most one exception. In this case the lower limit profile of the
category "succeed" is the vector (12, 12, 12, 12) and the suffi-
cient coalitions of criteria are all subsets of at least 3 subjects
for which the student’s mark is at least 12. Denote the stu-
dent’s marks by a = (a1, a2, a3, a4). The sufficient coalitions
can be represented by associating a weight to each course,
e.g. each exam receives a weight equal to 1/4, and choosing
an appropriate threshold, here 3/4. The assignment rule then
reads: x succeeds iff |{i : xi ≥ 12}| × 1/4 ≥ 3/4, which is
indeed the typical form of a MR-Sort rule.

Not all assignment rules based on sufficient coalitions can
be represented by additive weights and a threshold. For in-
stance, assume that the exams subjects are French language
(1), English language (2), Mathematics (3) and Physics (4).
To be successful, a student has to take at least 12 points in
one of the first two and in one of the last two. If the weights of
the four subjects are respectively denoted w1, w2, w3, w4 and
the threshold is λ and if we want to represent the rule us-
ing these weights and threshold, we see that these parameters
have to fulfill the following inequalities:

w1 + w3 ≥ λ
w1 + w4 ≥ λ
w2 + w3 ≥ λ
w2 + w4 ≥ λ
w1 + w2 < λ
w3 + w4 < λ

These conditions are contradictory. Indeed, summing up the
first four inequalities, we get that λ ≤ 1/2

∑4
i=1 wi, while
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summing up the last two yields λ > 1/2
∑4

i=1 wi.
Our goal with this paper is to investigate the gap of ex-

pressivity between MR-Sort and NCS model (without veto).
In this perspective, we analyze the possible families of suffi-
cient coalitions up to a number of criteria equal to 6. We start
by listing all these families, which raises difficulties due to the
combinatorial and complex character of this issue. Then we
study which families of sufficient coalitions are representable
by an inequality involving weights attached to the criteria, as
in MR-Sort. We partition the set of all families of sufficient
coalitions according to the type of inequality they fulfill. All
these families are counted and listed. This study aims first at
an explicit description of the families of sufficient criteria, up
to n = 6, in order to support further more theoretical inves-
tigations and practical applications. As a by-product, it also
enables to make simulations by drawing at random a MR-Sort
model or a NCS model. This proves useful e.g. for testing the
efficiency of algorithms designed for learning a NCS model on
the basis of assignment examples.

The rest of the paper is organized as follows. In Section
2, we state the problem more formally, we introduce the no-
tion of capacity and we recall combinatorial results related to
the enumeration of families of sufficient coalitions. Section 3
describes how the sets of sufficient coalitions were generated.
In Section 4, we explain how we partitioned the families of
sufficient coalitions; the size of each class of this partition is
computed. The next section explains how these results can
be exploited for simulation purposes and a short conclusion
follows.

2 Background

2.1 Numerical representation of the
sufficient coalitions

In MR-Sort, the set of sufficient coalitions of criteria can be
represented numerically. In other words it is possible to check
whether a set of criteria is sufficient by checking whether an
inequality is satisfied. More precisely, there is a family of non-
negative weights w1, w2, . . . , wn and a nonnegative threshold
λ such that a set of criteria A ⊆ {1, 2, . . . , n} is sufficient iff∑

i∈A

wi ≥ λ. (1)

We assume w.l.o.g. that
∑n

i=1 wi = 1. Such a representa-
tion is generally not unique. For instance, in the example
above involving 4 criteria, the family of sufficient coalitions
is formed by all subsets of at least 3 criteria; this family can
be represented by assigning equal weights to all criteria and
using threshold value 3/4. Alternatively, one could use e.g.
w1 = .2, w2 = .2, w3 = .3, w4 = .3 as weights and λ = .70 as
threshold to represent the same family of coalitions.

We saw also above that, in general, not all families of suf-
ficient coalitions can be specified by an inequality such as
(1). If this is not the case, is there another kind of inequality
that can be used? Actually, any family of sufficient coalitions
can be represented using a capacity µ and a threshold λ. We

briefly recall what is a capacity. A capacity is a set function
µ : 2n → R+ which is monotone w.r.t. to set inclusion, i.e. for
all A,B ⊆ {1, 2, . . . , n}, A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonic-
ity) and µ(∅) = 0. We impose w.l.o.g. that µ({1, 2, . . . , n}) =
1 (normalization). Note that a capacity is not additive, in
general, which means that it does not necessarily satisfy the
property: µ(A ∪ B) = µ(A) + µ(B) whenever A ∩ B = ∅. If
it does, then the capacity µ is said to be additive and it is a
probability. This means that there are weights w1, w2, . . . , wn

such that µ(A) =
∑

i∈A wi, for all set A ⊆ {1, 2, . . . , n}. A
(non necessarily additive) capacity can be given by means of
an interaction function (or Möbius transform) m. One has,
for all A ⊆ {1, 2, . . . , n}:

µ(A) =
∑
B⊆A

m(B) (2)

where m is a set function 2n → R which satisfies∑
B⊆{1,2,...,n}m(B) = 1 and

∑
B:i∈B⊆Am(B) ≥ 0, for all

i ∈ {1, 2, . . . , n} and A ⊆ {1, 2, . . . , n}. The capacity defined
by (2) is a probability iff m(B) = 0 whenever |B| > 1. A ca-
pacity is said to be k-additive when k is the largest cardinality
of the subsets for which m is different from 0. Probabilities
are 1-additive (or simply “additive”) capacities.

Proposition 1 Any family of sufficient coalitions can be rep-
resented as the set of subsets A ⊆ {1, 2, . . . , n} verifying

µ(A) ≥ λ, (3)

for some capacity µ and threshold λ ≥ 0. Conversely, if µ is
a capacity and λ is a nonnegative number, the set of subsets
A satisfying the inequality µ(A) ≥ λ is a family of sufficient
coalitions.

Proof. A family of sufficient coalitions is a family of subsets
such that any subset containing a subset of the family is it-
self in the family. Define a nonnegative set function µ letting
µ(A) = 1 if A is a sufficient coalition and 0 otherwise. One
can see that µ is monotone, and therefore a capacity, due
to the characteristic properties of the families of sufficient
coalitions. It is also normalized. Define the threshold λ = .5.
Clearly µ(A) ≥ .5 iff A is a sufficient coalition. The proof of
the converse is also straightforward.

As a consequence of this result, in a NCS model, the set
of sufficient coalitions can be either listed or specified by an
inequality such as (3). In a preference learning perspective, the
latter representation may be at an advantage since it opens
the perspective of using powerful optimization techniques (see
[13] for the learning of a NCS model on this basis)5. As already
observed in the case of weights, the capacity and threshold
used for representing a family of SC are generally not unique.

In the sequel we will be interested in parsimonious repre-
sentations, i.e. representations of a family of SC as the set of
coalitions A satisfying (3), using a k-additive capacity, with k
as small as possible. The smaller k, the smaller the number of

5 In [13], the NCS model without veto is called capacitive MR-Sort
model. Both models are essentially equivalent



parameters to identify capacity µ, for instance in a learning
process. If k = 1, the family of SC can be represented by an
inequality of type (1), which involves determining the value
of n + 1 parameters (the weights wi and the threshold λ). If
a family of SC is representable using a 2-additive capacity,
then we can write µ(A) =

∑
i∈Ami +

∑
i,j∈A,i6=j mij , where

we abuse notation denoting m({i}) by mi and m({i, j}) by
mij . In this case, learning µ requires the determination of
n(n+1)

2
+ 1 parameters.

2.2 Minimal sufficient coalitions

The set of SC may be large (typically exponential in n), but
one can avoid listing them all. A minimal sufficient coalition
(MSC) is a SC which is not properly included in another SC.
Knowing the set of MSC allows to determine all SC since a
coalition is sufficient as soon as it contains a MSC. A family
of MSC is any collection of subsets of {1, 2, . . . , n} such that
none of them is included in another. In other words, a set of
MSC is an antichain in the set of subsets of {1, 2, . . . , n} (par-
tially) ordered by inclusion. It is well-known that the number
of antichains in the power set of {1, 2, . . . , n} is D(n), the nth
Dedekind number ([15], sequence A000372). These numbers
grow extremely rapidly with n and no exact closed form is
known for them. These numbers have been computed up to
n = 8; these values appear in Table 1.

n D(n)
0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

Table 1. Known values of the Dedekind numbers D(n)

Remark. The Dedekind numbers are also the number of
monotone (more precisely, positive [5]) Boolean functions in
n variables. Clearly, the set of sufficient coalitions can be rep-
resented as the set of n-dimensional Boolean vectors which
give the value 1 to a monotone Boolean function, and con-
versely. Another application of the Dedekind numbers is in
game theory. They are the numbers of simple games with n
players in minimal winning form [16, 6].
One way of simplifying the study of the families of sufficient
coalitions consists in keeping only one representative of each
class of equivalent families of SC. Two families will be consid-
ered as equivalent, or isomorphic, if they can be transformed
one into the other just by permuting the labels of the criteria.
Consider e.g. the following family of minimal SC for n = 4:
{2, 4}, {2, 3}, {1, 3, 4}. It consists of 2 subsets of 2 criteria and
one of 3 criteria. There are 12 equivalent families that can
be obtained from this one, by permuting the criteria labels
(the criterion which does not show up in the set of 3 criteria
can be chosen in 4 different ways and the two criteria which

distinguish the two pairs can be chosen in 3 different ways).
The number R(n) of inequivalent families of SC is known for
n = 0 to n = 7 ([15], sequence A003182). R(7) was only re-
cently computed by Stephen and Yusun [14]. Table 2 lists the
known values of R(n).

n 0 1 2 3 4 5 6 7
R(n) 2 3 5 10 30 210 16353 490013148

Table 2. Number of inequivalent families of sufficient coalitions
of n criteria

Finally we recall Sperner’s theorem ([4], p.116-118), a result
that will be useful in the process of generating all possible
families of SC. The maximal size of an antichain in the power
set of a set of n elements is

(
n
bn/2c

)
. Hence the latter is the

maximal number of sets in a family of minimal SC.

3 Listing the families of minimal sufficient
coalitions

For generating all families of MSC and selecting a representa-
tive of each class of equivalent families, we follow a strategy
similar to the one used in [14]. We describe it briefly. The
families of MSC can be partitioned according to their type
(called “profile” in [14]). The type of a family of MSC is an in-
teger vector (k1, k2, . . . , kn), where ki represents the number
of coalitions of i criteria in the family. For instance, the fam-
ily {2, 4}, {2, 3}, {1, 3, 4}, for n = 4, is of the type (0, 2, 1, 0),
since it involves two coalitions of 2 criteria and one of 3 crite-
ria. For any feasible type,

∑n
i=1 ki ≤

(
n
bn/2c

)
, due to Sperner’s

theorem.
The listing algorithm roughly proceeds as follows:

1. generate all type vectors (k1, k2, . . . , kn) in lexicographic
increasing order;

2. for each type, generate all families of subsets of {1, 2, . . . , n}
having the right type and eliminate those that are not an-
tichains, i.e. those involving a subset that is included in
another subset;

3. for each type and for each family of this type, the list of
remaining families is screened for detecting families that
are equivalent, counting them and eliminating them from
the list of families of the type considered.

This algorithm outputs a list containing a representative of
each class of equivalent families of MSC for each type.
Example. For n = 3, the inequivalent families of MSC, with
their number of equivalent versions, are displayed in Table 3.

Remarks:

1. there exist two additional families which do not appear in
Table 3:

• the empty family, corresponding to the case in which no
coalition is sufficient, which means, for a sorting proce-
dure, that all objects are assigned to the “bad” category;

• the family of which the sole element is the empty set; this
means that all coalitions are sufficient, even the empty



Type Representative # equivalent
(1,0,0) {{1}} 3
(2,0,0) {{1}, {2}} 3
(3,0,0) {{1}, {2}, {3}} 1
(0,1,0) {{1,2}} 3
(1,1,0) {{1}, {2, 3}} 3
(0,2,0) {{1, 3}, {2, 3}} 3
(0,3,0) {{1, 2}, {1, 3}, {2, 3}} 1
(0,0,1) {{1,2,3}} 1
Total 8 18

Table 3. Number of inequivalent families of minimal sufficient
coalitions

one, and consequently, all objects are sorted in the “good”
category.

Adding these two extreme cases to the counts in the last
line of Table 3 yields values that are consistent with Tables
2 and 1.

2. for n = 3, every possible class type has a single representa-
tive. For larger values of n, this is no longer the case. For
instance, for n = 4, we have 3 inequivalent representatives
for type (0, 3, 0, 0):

Type Representative # equivalent
(0,3,0,0) {{1, 3}, {1, 2}, {3, 4}} 12
(0,3,0,0) {{2, 4}, {1, 2}, {1, 4}} 4
(0,3,0,0) {{2, 4}, {3, 4}, {1, 4}} 4

These three inequivalent families are the three sorts of non-
isomorphic 3-edge graphs on 4 vertices.

3. in the sequel, in the absence of ambiguity, we shall drop the
brackets around the coalitions and the commas separating
the elements of a coalition in order to simplify the descrip-
tion of a family of SC; for instance, the first family of type
(0,3,0,0) above will be denoted by : {13, 12, 34} instead of
{{1, 3}, {1, 2}, {3, 4}}.

The algorithm sketched above can be made more efficient
by implementing the following properties (see [14], lemma 2.4
for a proof) linking the families of MSC.

1. There is a one-to-one correspondence between families con-
sisting exclusively of ki MSC of cardinality i and fami-
lies consisting exclusively of

(
n
i

)
− ki MSC of cardinality

i. In other terms, there is a bijection between the fami-
lies of the type (0, . . . , 0, ki, 0, . . . , 0) and these of the type
(0, . . . , 0,

(
n
i

)
−ki, 0, . . . , 0). For instance, in Table 3, gener-

ating family {12} of type (0,1,0), automatically yields fam-
ily {13, 23} of type (0,2,0). The number of representatives
in both types are identical (three, in the latter example).

2. If a family of MSC on n criteria contains at least one sin-
gleton, then the remaining MSC of the family do not in-
volve this criterion and hence belong to a type of family of
MSC on n − 1 criteria. In the example of n = 3, knowing
the families of MSC on 2 criteria allows to generate the
families on three criteria for which one criterion alone is a
sufficient coalition. For instance, if criterion 1 alone is suf-
ficient, one can build all families in which 1 is a MSC by
putting together with 1 each family of MSC on criteria 2
and 3, i.e.: {}, {2},{3},{2, 3} and {23}. This, however, will

not allow to directly compute the number of representatives
of each type, since some families, involving more than one
singleton as MSC, can be generated in several ways. For
instance, {1, 2} will be obtained both when starting from
the singleton 1 as a MSC and completing this family by
MSC included in {2, 3}, and, starting from the singleton 2
and completing this family by MSC extracted from {1, 3}.

3. There is a one-to-one correspondence between families of
MSC belonging to type (k1, k2, . . . , kn−1, 0) and these be-
longing to the “reverse” type (kn−1, . . . , k2, k1, 0). For in-
stance, starting from the family {1, 2} belonging to type
(2,0,0) and taking the complement of each MSC, one ob-
tains the family {23, 13}, which belongs to (0,2,0). This
correspondence allows to halve the computations for D(n)
and R(n).

Using this algorithm on a cluster, we have computed the list
of all inequivalent families of MSC for n = 2 to n = 6. The
results, grouped by type, are available at http://olivier.
sobrie.be/shared/mbfs/. For illustrative purposes, the case
n = 4 is in Appendix A.

4 Partitioning the families of sufficient
coalitions

4.1 Checking representability by a
k-additive capacity

Our main goal in this section is to partition the set of families
of MSC, for fixed n, in categories Ck, which are defined as
follows.

Definition 1 A family of sufficient coalitions belongs to class
Ck if

1. it is the set of all subsets A of {1, 2, . . . , n} satisfying an
inequality of the type: µ(A) ≥ λ, where µ is a normalized
k-additive capacity and λ a non-negative real number;

2. k is the smallest integer for which such an inequality is
valid.

It is clear that all equivalent families of MSC belong to the
same class Ck. Hence it is sufficient to check for one represen-
tative of each class of equivalent families of MSC whether or
not it belongs to Ck.

The checking strategy is the following. For each inequiv-
alent family of MSC (listed as explained in Section 3), we
iteratively check whether it belongs to class Ck, starting from
k = 1 and incrementing k until the test is positive (we know,
by proposition 1, that this will occur at the latest for k = n).
The test can be formulated as a linear program. Basically, we
have to write constraints imposing that µ(A) ≥ λ for each suf-
ficient coalition A and that the same inequality is not satisfied
for all other coalitions , which will be called insufficient coali-
tions. It is enough to write these sorts of constraints only for
the minimal sufficient coalitions and for the maximal insuffi-
cient coalitions. The set of minimal sufficient (resp. maximal
insufficient) coalitions will be denoted SCMin (resp. SIMax).

http://olivier.sobrie.be/shared/mbfs/
http://olivier.sobrie.be/shared/mbfs/


To formulate the problem as a linear program, we use for-
mula (2), which expresses the value of the capacity µ as a
linear combination of its associated interaction function m.
This enables to control the parameter k which fixes the k-
additivity of the capacity. When checking whether a family
of MSC belongs to class Ck, we set the values of the vari-
ables m(B) to 0 for all sets B of cardinality superior to k;
the remaining values of the interaction function are the main
variables in the linear program. The following constitutes the
general scheme of the linear programs used for each class Ck:

max ε
µ(A) ≥ λ ∀A ∈ SCMin
µ(A) ≤ λ− ε ∀A ∈ SIMax
µ(A) =

∑
B⊆A

m(B) ∀A ∈ SCMin ∪ SIMax∑
B:i∈B⊆A

m(B) ≥ 0 ∀i ∈ {1, 2, . . . , n}

and ∀A ⊆ {1, 2, . . . , n}∑
B⊆{1,2,...,n}

m(B) = 1

λ, ε ≥ 0

(4)

Note that the variables m(B) are not necessarily positive
(except for |B| = 1). To fix the ideas, we show how to instan-
tiate the third, fourth and fifth constraints in the cases k = 1
and k = 2.

• k = 1 : 1-additive capacity

. µ(A) =
∑

i∈Ami, ∀A ∈ SCMin ∪ SIMax

. mi ≥ 0, ∀i ∈ {1, 2, . . . , n}

.
∑

i∈{1,2,...,n}mi = 1,

where mi stands for m({i})
• k = 2 : 2-additive capacity

. µ(A) =
∑

i∈Ami +
∑

i,j∈A, i6=j mij , ∀A ∈ SCMin ∪
SIMax

. mi +
∑

j∈A, j 6=imij ≥ 0, ∀i ∈ {1, 2, . . . , n} and ∀A 3
i, A ⊆ {1, 2, . . . , n}

.
∑

i∈{1,2,...,n}mi +
∑

i,j∈{1,2,...,n}, i6=j mij = 1,

where mi stands for m({i}) and mij for m({i, j}).

Writing the constraints for the 3-additive case requires the
introduction of a third family of variables mijl for each subset
{i, j, l} of three different criteria (in addition to the already
introduced variables mi and mij).

4.2 Results
For n = 1 to 6 and for each family in the list of inequivalent
families of MSC, we checked whether this family belongs to
Ck, starting with k = 1 and incrementing its value until the
check is positive. The results are presented in Table 4 for the
number and proportion of inequivalent families in classes C2
and C3. The families that are not in these classes belong to

class C1. Up to n = 6, inclusively, there are no families in
classes C4 or above, which means that all families can be rep-
resented using a 3-additive capacity (in the worst case). Up to
n = 5, inclusively, 2-additive capacities are sufficient. Table
5 represents a similar information but each family in the list
of inequivalent families is weighted by the size of the equiva-
lence class it represents. In other words, this is the result that
would have been obtained by checking all families of MSC for
belonging to class C1, C2 or C3.

n R(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 5 0 (00.00 %) 0 (00.00 %)
3 10 0 (00.00 %) 0 (00.00 %)
4 30 3 (10.00 %) 0 (00.00 %)
5 210 91 (43.33 %) 0 (00.00 %)
6 16 353 15 240 (93.19 %) 338 (02.07 %)

Table 4. Number and proportion of inequivalent families of MSC
that are representable by a 2- or 3-additive capacity

n D(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 6 0 (00.00 %) 0 (00.00 %)
3 20 0 (00.00 %) 0 (00.00 %)
4 168 18 (10.71 %) 0 (00.00 %)
5 7 581 4 294 (56.64 %) 0 (00.00 %)
6 7 828 354 7 584 196 (96.88 %) 145 502 (01.86 %)

Table 5. Number and proportion of all families of MSC that are
representable by a 2- or 3-additive capacity

The information displayed in Table 4 (resp. 5) is repre-
sented in graphical form in Figure 1 (resp. 2). The cases of
0, 1 and 2 criteria are not represented since all families can
be represented by a 1-additive capacity. These figures clearly
show that the proportion of families that can be represented
by means of a 1-additive capacity, i.e. by additive weights,
decreases quite rapidly with the number of criteria. In con-
trast, the proportion of families that can be represented by a
2-additive capacity grows up to more than 93% from n = 3 to
n = 6. The proportions slightly differ depending on whether
only inequivalent families or all families are taken into ac-
count. One can observe that the proportion of families in class
C2 is a bit larger when considering all families (Table 5 and
Figure 2).
Examples. As a matter of illustration, we describe a few ex-
amples for n = 4 and n = 6. The list of all inequivalent
MSC for n = 5, which are not representable by a 1-additive
capacity, is in appendix B. The categorization in classes Ck
is available at http://olivier.sobrie.be/shared/mbfs/ for
n = 4, 5, 6.

1. Here are the three families of MSC on 4 criteria that cannot
be represented using a 1-additive capacity (they can be by
a 2-additive capacity).

http://olivier.sobrie.be/shared/mbfs/
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Figure 1. Proportion of inequivalent families of MSC in classes
C1, C2, C3
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Figure 2. Proportion of all families of MSC in classes C1, C2, C3

Type Representative # equivalent
(0,2,0,0) {23, 14} 3
(0,3,0,0) {13, 12, 34} 12
(0,4,0,0) {13, 14, 23, 24} 3

These three inequivalent families yield, by permutations of
the criteria labels, a total of 18 families that can only be
represented using a 2-additive capacity.
The last inequivalent family is precisely the example that
we used in Section 1 to show that not all families of SC
can be represented by a 1-additive capacity. In contrast, it
can be represented, for instance, by setting m1 = m2 =
m3 = m4 = 1/6 and m13 = m14 = m23 = m24 = 1/12,
while the other pairwise interactions m12 and m34 are set
to 0. We then have: µ(13) = µ(14) = µ(23) = µ(24) = 5/12
while µ(12) = µ(34) = 4/12. Setting the threshold λ to
9/24 allows to separate the sufficient coalitions from the
insufficient. This representation is by no means unique. We
construct another capacity by setting m1 = m2 = m3 =
m4 = 1/3, m12 = m34 = −1/6 and m13 = m14 = m23 =
m24 = 0. We have: µ(13) = µ(14) = µ(23) = µ(24) = 2/3
while µ(12) = µ(34) = 1/2. Setting the threshold λ to 7/12
also separates the sufficient from the insufficient coalitions.
Note that the second example, a family of type (0,3,0,0)
already appeared in Remark 2 after Table 3.
Note also that the first and the last example are comple-
mentary in the sense of the first property allowing to speed
up the enumeration of the families of MSC described at the
end of Section 3. Both these families are composed of pairs
of criteria; the two pairs in the first family are disjoint from
the four in the third family and all pairs are either in one
or the other family. In such a situation, it is clear that both
families belong to the same class Ck.

2. Here are two examples of inequivalent families of MSC on
6 criteria that are not representable by a 2-additive ca-
pacity but require a 3-additive capacity. There are 338
such inequivalent families which yield, through permuta-
tions, a total of 145 502 families6. A simple example is of
the type (0,0,4,0,0,0). The MSC are {136, 234, 125, 456}.
There are 30 equivalent families that can be derived from
this family by permutation. Another, much more com-
plex example is of the type (0,1,7,1,0,0). The MSC are
{135, 256, 345, 36, 234, 456, 1245, 146, 123}. There are 360
families that are equivalent to this one through permuta-
tions.
In the 338 families, no MSC consists of a single criterion;
none of them involves 5 criteria. The largest number of
MSC in a family is 16, the maximal cardinality of a family
of MSC on 6 criteria being the Sperner number 20.

6 If all permutations of the criteria labels were yielding differ-
ent families, the total number of families would be 338 × 720 =
243 360



5 Usefulness of this analysis

5.1 Applications

The above results, although limited to 6 criteria, maybe useful
for different purposes, mainly related to the choice of a sorting
model and to simulation.

5.1.1 Choice of a sorting model

In the introduction, we argued that the MR-Sort model might
not be sufficiently flexible to accommodate certain assignment
rules of interest. The quick decrease with n (illustrated by Fig-
ures 1 and 2) of the proportion of rules that can be represented
by an inequality comparing a sum of weights to a threshold
(corresponding to families of MSC in class C1) shows that
it may indeed be useful to consider more general rules. For
n = 4, only 18 rules in a total of 168 cannot be represented by
a 1-additive capacity. For 5 criteria, there is no need to con-
sider more complicated models than these using a 2-additive
capacity. And for n = 6, in most of the cases (93% in terms of
inequivalent families of MSC and more than 96% if we con-
sider all families of MSC), a 2-additive capacity is enough.
These considerations are important in the case one wants to
learn a Capacitive-MR-Sort model (i.e. a NCS model with-
out veto) as in [13]. Knowing the minimal value of k enabling
to represent the set of MSC on n criteria allows to limit the
number of parameters (the interaction function m) that have
to be elicited or learned on the basis of examples.

Obviously, in many applications, the number of criteria may
exceed 6 and it would therefore be useful to extend the anal-
ysis for n > 6. Using the same methods as we did, it could be
possible to solve the case n = 7. But from n = 8 on, meth-
ods based on enumeration become impracticable: the number
R(8) of inequivalent families of MSC is not even known. Alter-
native approaches would consist in trying to find bounds on
the cardinal of the classes Ck or to obtain characterizations of
the families in the different classes and use these to generate
examples, whenever they exist, in the various categories.

5.1.2 Simulation

Recently, methods have been proposed to learn variants of
the ELECTRE TRI sorting model on the basis of assignment
examples [7, 18, 12, 13]. It has also been done [8] for a rank-
ing method based on reference points proposed by Rolland
[9, 3]. Consider e.g. a learning algorithm designed to learn a
MR-Sort model, as in [12]. Real data sets can be used to test
the performance of the algorithm. But for learning algorithms
which aim at selecting a rule in a specific family of sorting
rules, it is also needed to perform the following test, with arti-
ficial data. When a set of assignment examples is generated by
a known MR-Sort model, we would like to verify that the algo-
rithm, when applied to these examples, learns a model similar
to the original one. If some noise is added to the learning set,
one expects that the algorithm remains robust. In order to de-
sign such tests, we have to draw at random a MR-Sort model,
i.e. the profiles, the criteria weights and a threshold. Drawing

the profiles and the threshold at random does not raise major
problems. An algorithm for drawing weights summing up to
1 in a uniform way is also well-known [11].

In order to perform the same type of tests in the case of
the Capacitive-MR-Sort model (or the NCS model without
veto), we are facing a difficulty. How can one draw at random
a capacity, or more particularly a k-additive capacity? How
can one define a uniform distribution on the set of capaci-
ties? On second thought, we moved to another formulation
of this question. What we have to do is to draw at random,
uniformly (in some sense), a MR-Sort rule or a Capacitive-
MR-Sort rule, not a capacity. And this makes a difference,
since the representation of a Capacitive-MR-Sort rule by an
inequality involving a capacity and a threshold is not unique
(as observed previously), hence there is a representation bias
in this way of proceeding. Note that this remark also applies
to drawing at random an MR-Sort model. The alternative is
thus to select a rule at random, i.e. a family of MSC. That’s
what our results allow to do, up to n = 6. There is no need to
test the algorithm for several equivalent versions of the same
rule (i.e. for families of MSC that only differ by a permu-
tation of the criteria labels). We can thus sample the set of
inequivalent families (each weighted proportionally to the size
of its equivalence class). To draw a rule uniformly at random
from the set of all Capacitive-MR-Sort rules on n criteria (for
n ≤ 6), proceed as follows:

1. prepare a file in which all inequivalent families of MSC on
criteria are listed together with the size of their equivalence
class; let yl denote the lth family and sl the size of its
equivalence class, for l = 1, . . . R(n);

2. scan this list and sequentially assign to each family yl an
interval of sl consecutive integer numbers: yl is assigned
the interval [Nl, Nl + sl − 1], where Nl =

∑l−1
j=1 sj + 1;

3. draw uniformly at random an integer number N between 1
and NR(n);

4. find l such that N belongs to the interval [Nl, Nl + sl − 1]
and retrieve the representative of the family of MSC that
occupies the lth position in the list.

Note that the lists of inequivalent families also permit to con-
sider non-uniform distributions and to draw at random from
them according to an arbitrary probability distribution on the
families.

6 Conclusion

In this work, we explored the families of minimal sufficient
coalitions as they appear in sorting models such as MR-Sort
and Capacitive-MR-Sort. This exploration is limited to small
numbers of criteria because of the huge number of such mod-
els. Our goal was at least twofold:

1. to have at disposal and make generally available a detailed
picture of the possible families of sufficient coalitions for
as large as possible numbers of criteria; this information
could help further investigations related in particular to the
characterization of the families of sufficient coalitions that



can be separated from the insufficient ones by an inequality
involving a k-additive capacity.

2. to have at disposal and make generally available a list of
the possible sorting rules in the NCS model, in order to
enable to draw a rule at random according to any specified
probability distribution and use it in simulations. The space
needed to store these lists and the time to scan them can be
reduced, at least somewhat, by retaining only inequivalent
rules.

Further efforts in the future could lead to obtain the list of
inequivalent families of sufficient coalitions for n = 7. Another
interesting topic is the theoretical study of the different classes
Ck. Alternatively, other approaches to subdividing the set of
all families of sufficient coalitions could be of practical and
theoretical interest.
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Appendix
A List of inequivalent families of MSC for

n = 4

The families are grouped by type. There are 25 possible types,
29 inequivalent families of MSC (plus the trivial case in which
all coalitions are sufficient) and 167 families of MSC (plus
the same trivial case). Each inequivalent family in the list is
associated the size of its equivalence class. All inequivalent
families, except three of them, can be represented by a 1-
additive capacity. The three other families can be represented
by a 2-additive capacity. They are marked in the last column
by C2.

Type Family of MSC # eq. Ck
(0,0,0,0) {} 1
(0,0,0,1) {1234} 1
(0,0,1,0) {124} 4
(0,0,2,0) {234, 124} 6
(0,0,3,0) {134, 123, 124} 4
(0,0,4,0) {134, 123, 234, 124} 1
(0,1,0,0) {24} 6
(0,1,1,0) {14, 123} 12
(0,1,2,0) {24, 134, 123} 6
(0,2,0,0) {12, 23} 12

{23, 14} 3 C2
(0,2,1,0) {24, 134, 23} 12
(0,3,0,0) {13, 12, 34} 12 C2

{24, 12, 14} 4
{24, 34, 14} 4

(0,3,1,0) {13, 34, 23, 124} 4
(0,4,0,0) {24, 12, 13, 34} 3 C2

{24, 12, 14, 23} 12
(0,5,0,0) {24, 12, 14, 13, 34} 6
(0,6,0,0) {24, 12, 14, 34, 23, 13} 1
(1,0,0,0) {1} 4
(1,0,1,0) {234, 1} 4
(1,1,0,0) {14, 2} 12
(1,2,0,0) {13, 34, 2} 12
(1,3,0,0) {24, 34, 23, 1} 4
(2,0,0,0) {4, 3} 6
(2,1,0,0) {4, 23, 1} 6
(3,0,0,0) {4, 2, 1} 4
(4,0,0,0) {4, 2, 3, 1} 1

B List of inequivalent families of MSC of
class C2 for n = 5

We list below the 91 inequivalent families of MSC that cannot
be represented by a 1-additive capacity. They can all be rep-
resented using a 2-additive capacity. The families are grouped
by type. Each inequivalent family in the list is associated the
size of its equivalence class.

Type Family of MSC # eq.
(0,0,2,0,0) {135, 234} 15
(0,0,2,1,0) {234, 125, 1345} 15
(0,0,3,0,0) {145, 123, 345} 30

{235, 234, 125} 60
(0,0,3,1,0) {134, 135, 2345, 124} 60
(0,0,4,0,0) {145, 234, 345, 124} 15

{135, 245, 234, 125} 60
{235, 145, 135, 123} 60
{134, 345, 234, 125} 10

(0,0,4,1,0) {245, 123, 234, 125, 1345} 15
(0,0,5,0,0) {235, 134, 135, 345, 125} 60

{235, 134, 135, 245, 124} 12
{235, 145, 134, 245, 124} 60
{145, 134, 123, 234, 125} 60

(0,0,6,0,0) {135, 235, 234, 125, 145, 123} 15
{135, 345, 234, 125, 245, 123} 10
{345, 235, 234, 125, 124, 134} 60
{135, 345, 235, 125, 124, 145} 60

(0,0,7,0,0) {345, 234, 125, 145, 134, 245, 123} 30
{135, 235, 125, 124, 145, 134, 245} 60

(0,0,8,0,0) {135, 345, 234, 125, 124, 145, 245, 123} 15
(0,1,1,0,0) {123, 45} 10
(0,1,2,0,0) {15, 123, 345} 60

{12, 134, 345} 60
(0,1,3,0,0) {235, 14, 123, 125} 60

{13, 235, 145, 124} 60
{235, 14, 123, 245} 60
{24, 134, 135, 123} 30

(0,1,4,0,0) {235, 15, 245, 123, 234} 120
{135, 123, 25, 345, 124} 60
{235, 34, 145, 125, 124} 60
{24, 235, 135, 123, 125} 20

(0,1,5,0,0) {345, 235, 15, 234, 134, 123} 30
{235, 125, 124, 145, 34, 123} 60
{24, 135, 345, 235, 125, 123} 60

(0,1,6,0,0) {24, 135, 345, 235, 145, 134, 123} 60
(0,2,0,0,0) {34, 15} 15
(0,2,1,0,0) {12, 35, 234} 60

{145, 23, 25} 60
(0,2,2,0,0) {24, 13, 125, 345} 30

{24, 12, 135, 345} 30
{134, 23, 35, 124} 60
{13, 12, 245, 234} 120
{12, 245, 35, 234} 60

(0,2,3,0,0) {15, 23, 134, 345, 124} 60
{45, 134, 135, 234, 25} 120
{135, 123, 45, 125, 14} 60
{24, 235, 14, 345, 135} 30
{24, 34, 135, 123, 125} 60

(0,2,4,0,0) {135, 235, 14, 234, 123, 45} 60
{14, 35, 234, 125, 245, 123} 15
{24, 135, 235, 125, 34, 123} 30



Type Family of MSC # eq.
(0,3,0,0,0) {12, 14, 45} 60

{12, 34, 45} 30
(0,3,1,0,0) {24, 145, 23, 25} 60

{34, 14, 35, 125} 60
{34, 245, 23, 14} 120
{34, 14, 123, 25} 60

(0,3,2,0,0) {15, 14, 123, 25, 345} 60
{24, 12, 134, 35, 145} 30
{13, 23, 245, 125, 14} 120
{15, 45, 123, 234, 25} 60

(0,3,3,0,0) {24, 135, 145, 134, 23, 25} 20
{12, 35, 234, 145, 13, 245} 60

(0,4,0,0,0) {34, 15, 14, 35} 15
{24, 15, 23, 25} 60
{24, 34, 15, 23} 10
{24, 34, 15, 35} 60

(0,4,1,0,0) {13, 34, 35, 25, 145} 60
{24, 13, 15, 25, 345} 60
{13, 15, 23, 25, 345} 30
{34, 14, 45, 125, 23} 60

(0,4,2,0,0) {24, 12, 35, 145, 134, 23} 60
{24, 35, 145, 34, 25, 123} 15

(0,5,0,0,0) {24, 13, 15, 23, 14} 60
{24, 12, 15, 35, 25} 60
{24, 12, 15, 35, 34} 12
{12, 15, 34, 25, 45} 60

(0,5,1,0,0) {135, 12, 14, 34, 23, 25} 60
{15, 35, 124, 23, 13, 45} 60

(0,6,0,0,0) {24, 12, 23, 25, 13, 45} 15
{24, 12, 35, 34, 25, 13} 10
{24, 12, 34, 23, 13, 45} 60
{15, 14, 34, 23, 25, 45} 60

(0,6,1,0,0) {24, 12, 35, 145, 34, 25, 13} 10
(0,7,0,0,0) {12, 14, 34, 23, 25, 13, 45} 30

{24, 12, 15, 14, 35, 34, 45} 60
(0,8,0,0,0) {24, 12, 15, 34, 23, 25, 13, 45} 15
(1,2,0,0,0) {34, 15, 2} 15
(1,3,0,0,0) {24, 15, 3, 25} 60
(1,4,0,0,0) {13, 2, 14, 35, 45} 15


	1 Introduction
	2 Background
	2.1 Numerical representation of the sufficient coalitions
	2.2 Minimal sufficient coalitions

	3 Listing the families of minimal sufficient coalitions
	4 Partitioning the families of sufficient coalitions
	4.1 Checking representability by a k-additive capacity
	4.2 Results

	5 Usefulness of this analysis
	5.1 Applications
	5.1.1 Choice of a sorting model
	5.1.2 Simulation


	6 Conclusion
	A List of inequivalent families of MSC for n=4
	B List of inequivalent families of MSC of class [2] for n=5

