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Abstract. We consider a multicriteria sorting procedure
based on a majority rule, called MR-Sort. This procedure al-
lows to sort each object of a set, evaluated on multiple cri-
teria, in a category selected among a set of pre-defined and
ordered categories. With MR-Sort, the ordered categories are
separated by profiles which are vectors of performances on
the different attributes. An object is assigned in a category
if it is as good as the category lower profile and not better
than the category upper profile. To determine if an object
is as good as a profile, the weights of the criteria on which
the object performances are better than the profile perfor-
mances are summed up and compared to a threshold. In view
of improving the expressiveness of the model, we modify it
by introducing capacities to quantify the power of the coali-
tions. In the paper we describe a mixed integer program and
a metaheuristic that give the possibility to learn the parame-
ters of this model from examples of assignment. We test the
metaheuristic on real datasets.

1 Introduction
In Multiple Criteria Decision Analysis, the sorting problem-
atic consists in assigning each alternative of a set, evaluated
on several monotone criteria, in a category selected among
a set of pre-defined and ordered categories. Several MCDA
methods are designed to handle such type of problematic. In
this paper, we consider a sorting model based on a major-
ity rule, called MR-Sort [11, 17]. In MR-Sort, the categories
are separated by profiles which are vectors of performances
on the different criteria. Each criterion of the model is as-
sociated to a weight representing its importance. Using this
model, an alternative is assigned in a category if (a) it is con-
sidered at least as good as the category lower profile and (b)
it is not considered at least as good as the category upper
profile. An alternative is considered as good as a profile if its
performances are at least as good as the profile performances
on a weighted majority of criteria.

Consider a MR-Sort model composed of 4 criteria (c1, c2,
c3 and c4) and 2 ordered categories (C2 � C1), separated by a
profile b1. Using this model, an alternative is assigned in the
“good” category (C2) iff its performances are as good as the
profile b1 on at least one of the four following minimal criteria
coalition:
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1. c1 ∧ c2
2. c3 ∧ c4
3. c1 ∧ c4
4. c2 ∧ c4

A coalition of criteria is said to be minimal if removing any
criterion is enough to reject the assertion “alternative a is as
good as profile b”. Using an additive MR-Sort model, it can be
achieved by selecting, for instance, the following weights and
majority threshold: w1 = 0.3, w2 = 0.2, w3 = 0.1, w4 = 0.4
and λ = 0.5. We have w1 +w2 = λ, w3 +w4 = λ, w1 +w4 > λ
and w2 +w4 > λ. All the other coalitions of criteria which are
not supersets of the 3 minimal coalitions listed above are not
sufficient to be considered as good as b1 (e.g. w1 + w3 < λ).

Now consider the same type of model, but with the follow-
ing minimal criteria coalitions:

1. c1 ∧ c2
2. c3 ∧ c4

Modeling this classification rule with an additive MR-Sort
model is impossible. There exist no weights and majority
threshold satisfying solely the 2 minimal criteria coalitions. In
view of being able to represent such type of rule, we propose in
this paper a new formulation of MR-Sort, called Capacitive-
MR-Sort. This formulation expresses the majority rule of MR-
Sort with capacities like in the Choquet Integral [8].

The paper is organized as follows. The next section de-
scribes formally the MR-Sort model and the new formulation
of MR-Sort with capacities. Section 3 recalls the literature
dealing with learning parameters of MR-Sort models from as-
signment examples. The next two sections describe respec-
tively a Mixed Integer Program and a metaheuristic that al-
low to learn the parameters of a Capacitive-MR-Sort. Some
experimental results are finally presented.

2 MR-Sort and Capacitive-MR-Sort
2.1 MR-Sort
MR-Sort is a method for assigning objects in ordered cate-
gories. Each object is described by a multicriteria vector of
attribute values. The attribute values can be meaningfully or-
dered, i.e. there is an underlying order on each attribute scale,
which is interpreted as a “better than” relation. Categories are
determined by limit profiles, which are vectors of attribute
values. The lower limit profile of a category is the upper limit
profile of the category below. The MR-Sort rule works as fol-
lows. An object is assigned to a category if it is better than
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the lower limit profile of the category on a sufficiently large
coalition of (weighted) attributes and this condition is not
met for the upper limit profile of this category. Obviously,
MR-Sort is a monotone rule, i.e. an object that is at least
as good as another on all attributes cannot be assigned to a
lower category.

The MR-Sort rule is a simplified version of the ELECTRE
TRI procedure, a method that is used in MCDA to assign
objects to predefined categories [19, 16]. The underlying se-
mantic is generally to assign the objects labels such as “good”,
“average”, “bad”, . . . .

Formally, let X be a set of objects evaluated on n ordered
attributes (or criteria), F = {1, ..., n}. We assume that X is
the Cartesian product of the criteria scales, X =

∏n
j=1Xj .

An object a ∈ X is thus a vector (a1, . . . , aj , . . . , an), where
aj ∈ Xj for all j.

The ordered categories which the objects are assigned to
by the MR-Sort model are denoted by Ch, with h = 1, . . . , p.
Category Ch is delimited by its lower limit profile bh−1 and
its upper limit profile bh, which is also the lower limit profile
of category Ch+1 (provided 0 < h < p). The profile bh is the
vector of criterion values (bh,1, . . . , bh,j , . . . , bh,n), with bh,j ∈
Xj for all j. We denote by P = {1, ...., p−1} the list of profile
indices.

By convention, the best category, Cp, is delimited by a fic-
tive upper profile, bp, and the worst one, C1, by a fictive lower
profile, b0.

It is assumed that the profiles dominate one another, i.e.:

bh−1,j ≤ bh,j , h = 1, . . . , p; j = 1, . . . , n.

Using the MR-Sort procedure, an object is assigned to a
category if its criterion values are at least as good as the
category lower profile values on a weighted majority of criteria
while this condition is not fulfilled when the object’s criterion
values are compared to the category upper profile values. In
the former case, we say that the object is preferred to the
profile, while, in the latter, it is not. Formally, if an object
a ∈ X is preferred to a profile bh, we denoted this by a <
bh. Object a is preferred to profile bh whenever the following
condition is met:

a < bh ⇔
∑

j:aj≥bh,j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion
j, for all j and λ sets a majority level. The weights satisfy the
normalization condition

∑
j∈F wj = 1; λ is called the majority

threshold ; it satisfies λ ∈ [1/2, 1].
The preference relation < defined by (1) is called an out-

ranking relation without veto or a concordance relation ([16];
see also [2, 3] for an axiomatic description of such relations).

Consequently, the condition for an object a ∈ X to be as-
signed to category Ch writes:∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j

wj < λ (2)

The MR-Sort assignment rule described above involves pn+
1 parameters, i.e. n weights, (p− 1)n profiles evaluations and

one majority threshold. Note that the profiles b0 and bp are
conventionally defined as follows: b0,j is a value such that
aj ≥ b0,j for all a ∈ X and j = 1, . . . , n; bp,j is a value such
that aj < bp,j for all a ∈ X and j = 1, . . . , n.

A learning set A is a subset of objects A ⊆ X for which
an assignment is known. For h = 1, . . . , p, Ah denotes the
subset of objects a ∈ A which are assigned to category Ch.
The subsets Ah are disjoint; some of them may be empty.

2.2 Capacitive-MR-Sort
Before describing the Capacitive-MR-Sort model, we intro-
duce the notion of capacity. To illustrate this, we consider an
application in which a committee for a higher education pro-
gram has to decide about the admission of students on basis
of their evaluations in 4 courses: math, physics, chemistry and
history. To be accepted in the program, the committee judges
that a student should have a sufficient majority of evaluations
above 10/20. The courses (criteria) coalitions don’t have the
same importance. The strength of a coalition of courses varies
as a function of the courses belonging to the coalition. The
committee stated that the following subsets of courses are the
minimal coalition of courses in which the evaluation should
be above 10/20 in view of being accepted:

• {math, physics}
• {math, chemistry}
• {chemistry, history}

As an example of this rule, Table 1 shows evaluations of sev-
eral students and, for each student, if he is accepted or refused.

Math Physic Chemistry History A/R

James 11 11 9 9 A
Marc 11 9 11 9 A
Robert 9 9 11 11 A
John 11 9 9 11 R
Paul 9 11 9 11 R
Pierre 9 11 11 9 R

Table 1. Evaluation of students and their acceptance/refusal sta-
tus

Representing these assignments by using a MR-Sort model
with profiles fixed at 10/20 in each course is impossible. There
are no weights allowing to model such rules. MR-Sort is not
adapted to model such types of rules because it does not han-
dle criteria interactions.

In view of taking criterion interactions into account, we pro-
pose to modify the definition of the global outranking relation,
a < bh, given in (1). We introduce the notion of capacity. A
capacity is a function µ : 2F → [0, 1] such that:

• µ(B) ≥ µ(A), for all A ⊆ B ⊆ F (monotonicity) ;
• µ(∅) = 0 and µ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in an-
other form:

µ(A) =
∑
B⊆A

m(B) (3)



for all A ⊆ F , with m(B) defined as:

m(B) =
∑
C⊆B

(−1)|B|−|C|µ(C) (4)

The value m(B) can be interpreted as the weight that is ex-
clusively allocated to B as a whole. A capacity can be defined
directly by its Möbius transform also called “interaction”. An
interaction m is a set function m : 2F → [−1, 1] satisfying the
following conditions:∑

j∈K⊆J∪{j}

m(K) ≥ 0 ∀j ∈ F, J ⊆ F\{i} (5)

and∑
K⊆F

m(K) = 1.

If m is an interaction, the set function defined by µ(A) =∑
B⊆Am(B) is a capacity. Conditions (5) guarantee that µ is

monotone [5].
Using a capacity to express the weight of the coalition in

favor of an object, we transform the outranking rule as follows:

a < bh ⇔ µ(A) ≥ λ with A = {j : aj ≥ bh,j}

and µ(A) =
∑
B⊆A

m(B) (6)

Computing the value of µ(A) with the Möbius transform in-
duces the evaluation of 2|A| parameters. In a model composed
of n criteria, it implies the elicitation of 2n parameters, with
µ(∅) = 0 and µ(F ) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interac-
tions involving more than 2 criteria are equal to zero. In the
literature [12], for the ranking problematic, it has been shown
experimentally that a 2-additive model allows to improve the
representation capabilities. However using a 3-additive capac-
ity instead of a 2-additive one does not significantly improve
the accuracy of the model. Inferring a 2-additive capacity
for a model having n criteria requires the determination of
n(n+1)

2
− 1 parameters.

Finally, the condition for an object a ∈ X to be assigned
to category Ch can be expressed as follows:

µ(Fa,h−1) ≥ λ and µ(Fa,h) < λ (7)

with Fa,h−1 = {j : aj ≥ bh−1,j} and Fa,h = {j : aj ≥ bh,j}.

3 Learning the parameters of a MR-Sort
model

Learning the parameters of MR-Sort and ELECTRE TRI
models has been already studied in several articles [14, 13,
15, 6, 7, 11, 4, 17, 20]. In this section, we recall how to learn
the set of parameters of an MR-Sort using respectively an
exact method [11] and a metaheuristic [17].

3.1 Mixed Integer Programming
Learning the parameters of an MR-Sort model using linear
programming techniques has been proposed in [11]. The pa-
per describes a Mixed Integer Program (MIP) taking a set
of assignment examples and their vector of performances as
input and finding the parameters of an MR-Sort model such
that a majority of the examples are restored by the inferred
model. We recall in this subsection the main steps to obtain
the MIP formulation proposed in [11].

The definition of an outranking relation (1) can be rewritten
as follows:

a < bh ⇐⇒
n∑
j=1

cha,j ≥ λ, with cha,j =

{
wj if aj ≥ bh,j
0 otherwise

To linearize this constraint, we introduce for each value cha,j , a
binary variable δla,j that it is equal to 1 when the performance
of the object a is at least equal or better than the performance
of the profile bl on criterion j and 0 otherwise. To obtain the
value of δla,j , we add the following constraints:

M(δla,j − 1) ≤ aj − bl,j < M · δla,j (8)

By using the value δla,j , the values of cla,j are deduced as
follows:

cla,j ≤ δla,j
cla,j ≤ wj
cla,j ≥ δla,j − 1 + wj

The objective function of the MIP consists in maximizing
the number of examples compatible with the learned model,
i.e. minimizing the 0/1 loss function. In order to model this,
we introduce new binary variables γa, equal to 1 if object a
is assigned in the expected category, i.e. the category it has
been assigned in the learning set, and equal to 0 otherwise.
To deduce the value of γa variables, two additional constraints
are added:{∑n

j=1 c
h−1
a,j ≥ λ+M(γa − 1)∑n

j=1 c
h
a,j < λ−M(γa − 1)

Finally, the combination of all the constraints leads to the
MIP given in (9).

3.2 Metaheuristic
The MIP presented in the previous section is not suitable
for large datasets because of the high computing time that is
required to infer the MR-Sort parameters. In view of learn-
ing MR-Sort models in the context of large datasets, a meta-
heuristic has been proposed in [17]. As in the MIP, the meta-
heuristic takes as input a set of assignment examples and
their vector of performances and returns the parameters of
an MR-Sort model.

The metaheuristic proposed in [17] works as follows. First
a population of MR-Sort models is initialized. After the ini-
tialization, the two following steps are repeated iteratively on
each model in the population:





max
∑
a∈A

γa

n∑
j=1

ch−1
a,j ≥ λ+M(γa − 1) ∀a ∈ Ah, h = {2, ..., p}

n∑
j=1

cha,j < λ−M(γa − 1) ∀a ∈ Ah, h = {1, ..., p− 1}

aj − bl,j < M · δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

cla,j ≤ δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≤ wj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≥ δla,j − 1 + wj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p− 1}

n∑
j=1

wj = 1

δla,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ X
wj ∈ [0, 1] ∀j ∈ F
λ ∈ [0.5, 1]

(9)

1. A linear program optimizes the weights and the majority
threshold on basis of assignment examples and fixed pro-
files.

2. Given the inferred weight and the majority threshold, a
heuristic adjusts the profiles of the model on basis of the
assignment examples.

After applying these two steps to all the models of the pop-
ulation, the bn

2
c models restoring the least numbers of ex-

amples are reinitialized. These steps are repeated until the
metaheuristic finds a model that fully restores all the exam-
ples or after a number of iterations given a priori.

The linear program designed to learn the weights and the
majority threshold is given by (10). It minimizes a sum of
slack variables, x′a and y′a, that is equal to 0 when all the
objects are correctly assigned, i.e. assigned in the category
defined in the input dataset. We remark that the objective
function of the linear program does not explicitly minimize
the 0/1 loss but a sum of slacks. It implies that compensatory
effects might appears to the detriment of the 0/1 loss. How-
ever in this metaheuristic, we consider that this effects are
acceptable. This linear program doesn’t contain binary vari-
ables, therefore the computing time remains reasonable when
the size of the problem increases.

The objective function of the heuristic varying the pro-
files maximizes the number of examples compatible with the
model. To do so, it iterates over each profile h and each cri-
terion j and identifies a set of candidate moves which cor-
respond to the performances of the examples on criterion j
located between the profiles h− 1 and h+ 1. Each candidate
move is evaluated as a function of the probability to improve
the classification accuracy of the model. To evaluate if a can-
didate move is likely or unlikely to improve the classification

of one or several objects, the examples which have an evalu-
ation on criterion j located between the current value of the
profile, bh,j and the candidate move, bh,j + δ (resp. bh,j − δ)
are classified in different subsets:

V +δ
h,j (resp. V −δh,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j results in a correct
assignment.

W+δ
h,j (resp. W−δh,j ) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j strengthens the criteria
coalition in favor of the correct classification but will not
by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δh,j) : the sets of objects correctly classified in
Ch+1 (resp. Ch+1) for which moving the profile bh by +δ
(resp. −δ) on j results in a misclassification.

R+δ
h,j (resp. R−δh,j) : the sets of objects misclassified in Ch+1

instead of Ch (resp. Ch instead of Ch+1), for which moving
the profile bh by +δ (resp. −δ) on j weakens the criteria
coalition in favor of the correct classification but does not
induce misclassification by itself.

T+δ
h,j (resp. T−δh,j ) : the sets of objects misclassified in a cate-
gory higher than Ch (resp. in a category lower than Ch+1)
for which the current profile evaluation weakens the criteria
coalition in favor of the correct classification.

In order to formally define these sets we introduce the fol-
lowing notation. Alh denotes the subset of misclassified ob-
jects that are assigned in category Cl by the model while in
the dataset, they are assigned in category Ch. A>l<h denotes
the subset of misclassified objects that are assigned in cate-
gory higher than Cl by the model while in the dataset it is
assigned in a category below Ch. We denote by σ(a, bh) =





min
∑
a∈A

(x′a + y′a)∑
j:aj≥bh−1,j

wj − xa + x′a = λ ∀a ∈ Ah, ∀h ∈ P\{1}∑
j:aj≥bh,j

wj + ya − y′a = λ− δ ∀a ∈ Ah, ∀h ∈ P\{p− 1}

n∑
j=1

wj = 1

wj ∈ [0; 1] ∀j ∈ F
λ ∈ [0.5; 1]

xa, ya, x
′
a, y
′
a ∈ R+

0

(10)

∑
j:aj≥bh,j

wj , the sum of criteria weights in favor of object a
against profile bh. We have, for any h, j and positive δ:

V
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

V
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}
W

+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj ≥ λ
}

W
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and σ(a, bh) + wj < λ

}
Q

+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and σ(a, bh)− wj < λ
}

Q
−δ
h,j =

{
a ∈ Ahh : bh,j − δ < aj < bh,j and σ(a, bh) + wj ≥ λ

}
R

+δ
h,j =

{
a ∈ Ahh+1 : bh,j + δ > aj ≥ bh,j

}
R

−δ
h,j =

{
a ∈ Ah+1

h : bh,j − δ < aj < bh,j

}
T

+δ
h,j =

{
a ∈ A>h<h : bh,j + δ > aj ≥ bh,j

}
T

−δ
h,j =

{
a ∈ A<h+1

>h+1 : bh,j − δ < aj ≤ bh,j
}

The evaluation of the candidate move is done by aggregat-
ing the number of elements in each subset. Finally the choice
to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random num-
ber drawn uniformly. These operations are repeated multiple
times on each profile and each criterion.

4 Mixed Integer Program to learn a
Capacitive-MR-Sort model

As compared to a MR-Sort with additive weights, a MR-Sort
model with capacities implies more parameters. In a stan-
dard MR-Sort model, a weight is associated to each crite-
rion, which makes overall n parameters to elicit. With an
MR-Sort model limited to two-additive capacities, the com-
putation of the weights of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise inter-
actions (Möbius coefficients) between these criteria. Overall
there are n+ n(n−1)

2
− 1 = n(n+1)

2
− 1 coefficients. In the two-

additive case, let us denote by mj the weights of criterion j
and by mj,k the Möbius interactions between criteria j and
k. The capacity µ(A) of a subset of criteria is obtained as:
µ(A) =

∑
j∈Amj +

∑
{j,k}⊆Amj,k. The constraints (5) on

the interaction read:

mj +
∑
k∈J

mj,k ≥ 0 ∀j ∈ F,∀J ⊆ F\{j} (11)

and∑
j∈F

mj +
∑

{j,k}⊆F

mj,k = 1.

The number of monotonicity constraints evolves exponentially
as a function of the number of criteria, n. In [10], two other
formulations are proposed in order to reduce significantly the
number of constraints ensuring the monotonicity of the capac-
ities. The first formulation reduces the number of constraints
to 2n2 but leads to a non linear program. The second formu-
lation introduces n2 extra variables and reduces the number
of constraints to n2 + 1 without introducing non linearities.

With a 2-additive MR-Sort model, the constraints for an
alternative a to be assigned in a category h (7) can also be
expressed as follows:{∑n

j=1 c
h−1
a,j +

∑n
j=1

∑j
k=1 c

h−1
a,j,k ≥ λ+M(γa − 1)∑n

j=1 c
h
a,j +

∑n
j=1

∑j
k=1 c

h
a,j,k < λ−M(γa − 1)

(12)

with:

• ch−1
a,j (resp. cha,j) equals mj if performance of alternative a
is at least as good as the performance of profile bh−1 (resp.
bh) on criterion j, and equals 0 otherwise;

• ch−1
a,j,k (resp. cha,j,k) equals mj,k if performance of alternative
a is at least as good as the performance of profile bh−1 (resp.
bh) on criteria j and k, and equals 0 otherwise.

For all a ∈ X, j ∈ F and l ∈ P , constraints (11) imply that
cla,j ≥ 0 and that cla,j,k ∈ [−1, 1]. The values of ch−1

a,j and cha,j
can be obtained in a similar way as it is done for learning the
parameters of a standard MR-Sort model by replacing the
weights with the corresponding Möbius coefficient (13).

cla,j ≤ δla,j
cla,j ≤ mj

cla,j ≥ δla,j − 1 +mj

(13)

However it is not the case for the variables ch−1
a,j,k and cha,j,k,

because they imply two criteria. To linearize the formulation,



we introduce new binary variables, ∆l
a,j,k equal to 1 if alter-

native a has better performances than profile bl on criteria j
and k and equal to 0 otherwise. We obtain the value of ∆l

a,j,k

thanks to the conjunction of constraints given at (8) and the
following constraints:

2∆l
a,j,k ≤ δla,j + δka,j ≤ ∆l

a,j,k + 1

In order to deduce the value of cla,j,k, which can be either
positive or negative, for all l ∈ P , we decompose the variable
in two parts, αla,j,k and βla,j,k such that cla,j,k = αla,j,k−βla,j,k
with αla,j,k ≥ 0 and βla,j,k ≥ 0. The same is done for mj,k

which is decomposed as follows: mj,k = m+
j,k − m−j,k with

m+
j,k ≥ 0 and m−j,k ≥ 0. The value of αla,j,k and βla,j,k are

finally obtained thanks to the following constraints:
αla,j,k ≤ ∆l

a,j,k

αla,j,k ≤ m+
j,k

αla,j,k ≥ ∆l
a,j,k − 1 +m+

j,k


βla,j,k ≤ ∆l

a,j,k

βla,j,k ≤ m−j,k
βla,j,k ≥ ∆l

a,j,k − 1 +m−j,k

Finally, we obtain the MIP given in (14).

5 Metaheuristic to learn a
Capacitive-MR-Sort model

The MIP described in the previous section requires a lot of
binary variables and is therefore unsuitable for large problems.
In subsection 3.2, we described the principle of a metaheuristic
designed to learn the parameters of an MR-Sort model. In
this section, we describe an adaptation of the metaheuristic
in view of learning the parameters of a Capacitive-MR-Sort
model. Like for the MIP described in the previous section, we
limit the model to 2-additive capacities in order to reduce the
number of coefficient in comparison to a model with a general
capacity.

The main component that needs to be adapted in the meta-
heuristic in order to be able to learn a Capacitive-MR-Sort
model is the linear program that infers the weights and the
majority threshold (10). Like in the MIP described in the
previous section, we use the Möbius transform to express ca-
pacities. In view of inferring Möbius coefficients,mj andmj,k,
∀j, ∀k with k < j, we modify the linear program as given in
(15).

The value of xa − x′a (resp. ya − y′a) represents the dif-
ference between the capacity of the criteria belonging to the
coalition in favor of a ∈ Ah w.r.t. bh−1 (resp. bh) and the
majority threshold. If both xa − x′a and ya − y′a are positive,
then the object a is assigned to the right category. In order to
try to maximize the number of examples correctly assigned
by the model, the objective function of the linear program
minimizes the sum of x′a and y′a, i.e. the objective function is
min

∑
a∈A(x′a + y′a).

The heuristic adjusting the profile also needs some adap-
tations in view of taking capacities into account. More pre-
cisely, it is needed to adapt the formal definition of the sets in
which objects are classified for computing the candidate move
evaluation. The semantic of the sets, described in Section 3.2

remains the same, only the formal definitions of the sets are
adapted as follows.

V
+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) < λ
}

V
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) ≥ λ

}
W

+δ
h,j =

{
a ∈ Ah+1

h : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) ≥ λ
}

W
−δ
h,j =

{
a ∈ Ahh+1 : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) < λ

}
Q

+δ
h,j =

{
a ∈ Ah+1

h+1 : bh,j + δ > aj ≥ bh,j and µ(Fa,h\{j}) < λ
}

Q
−δ
h,j =

{
a ∈ Ahh : bh,j − δ < aj < bh,j and µ(Fa,h ∪ {j}) ≥ λ

}

The formal definitions of the sets R+δ
h,j , R

−δ
h,j , T

+δ
h,j remain

the same as for the simple additive MR-Sort model as well as
function computing the evaluations taking into account the
size of the sets.

6 Experimentations

The use of the MIP for learning a Capacitive-MR-Sort model
is limited because of the high number of binary variables
it involves. It contains more binary variables than the MIP
learning the parameters of a simple additive MR-Sort model.
In [11], experiments have demonstrated that the computing
time required to learn the parameters of a standard MR-Sort
model having a small number of criteria and categories from a
small set of assignment examples becomes quickly prohibitive.
Therefore we cannot expect to be able to treat large problems
using the MIP learning Capacitive-MR-Sort models.

In view of assessing the performances of the metaheuristic
designed for learning the parameters of a Capacitive-MR-Sort
model, we used it to learn Capacitive-MR-Sort models from
several real datasets presented in Table 2. These datasets have
been found in the UCI machine learning repository [1] and
in WEKA [9]. They have been already used to assess the
learning performances of other algorithms, like in [18] and
[17]. The dataset presented in Table 2 contains from 120 to
1728 instances, 4 to 8 criteria (criteria) and 2 to 36 categories.
In the experimentations, the categories have been binarized
by thresholding at the median (like in [18, 17]). All the input
criteria of the datasets are considered as monotone.

Dataset #instances #criteria #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 9
LEV 1000 4 5
CEV 1728 6 4

Table 2. Datasets

In a first experiment, we used 50% of the alternatives con-
tained in the datasets as learning set and the rest as test





max
∑
a∈A

γa

n∑
j=1

ch−1
a,j +

n∑
j=1

j∑
k=1

αh−1
a,j,k −

n∑
j=1

j∑
k=1

βh−1
a,j,k ≥ λ+M(γa − 1) ∀a ∈ Ah, h = 2, ..., p

n∑
j=1

cha,j +

n∑
j=1

j∑
k=1

αha,j,k −
n∑
j=1

j∑
k=1

βha,j,k < λ−M(γa − 1) ∀a ∈ Ah, ∀h ∈ P

cla,j ≤ δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≤ mj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
cla,j ≥ δla,j − 1 +mj ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

aj − bl,j < M · δla,j ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

δla,j + δla,k ≥ 2∆l
a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah,∀h ∈ P, l = {h− 1, h}

δla,j + δla,k ≤ ∆l
a,j,k + 1 ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≤ ∆l
a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≤ m+
j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k ≥ ∆l
a,j,k − 1 +m+

j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≤ ∆l

a,j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≤ m−j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
βla,j,k ≥ ∆l

a,j,k − 1 +m−j,k ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
mj +

∑
k∈J

(m+
j,k −m

−
j,k) ≥ 0 ∀j ∈ F,∀J ⊆ F\{j}

bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p− 1}
n∑
j=1

mj +

n∑
j=1

j∑
k=1

(m+
j,k −m

−
j,k) = 1

cla,j ∈ [0, 1] ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
δla,j ∈ {0, 1} ∀j ∈ F,∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

αla,j,k, β
l
a,j,k ∈ [0, 1] ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah,∀h ∈ P, l = {h− 1, h}

∆l
a,j,k ∈ {0, 1} ∀j ∈ F,∀k ∈ F, k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
mj ∈ [0, 1] ∀j ∈ F

m+
j,k,m

−
j,k ∈ [0, 1] ∀j ∈ F,∀k ∈ F, k < j
bh,j ∈ R ∀j ∈ F,∀h ∈ P
γa ∈ {0, 1} ∀a ∈ X
λ ∈ [0, 1]

(14)

set. From the examples of the learning set, we learned MR-
Sort and Capacitive-MR-Sort models with the metaheuristic.
We repeated the operation for 100 random splittings of the
datasets in learning and test sets. The results are given in Ta-
ble 3. We see that the average classification accuracy obtained
with the Capacitive-MR-Sort metaheuristic is in average com-
parable to the one obtained with the MR-Sort metaheuris-
tic. For some datasets, the Capacitive-MR-Sort metaheuristic
gives better results but sometimes it is the contrary. The use
of a more descriptive model does not help to improve the
classification accuracy of the test set.

The second experiment we did consisted in using all the
instances of the datasets as learning set. As in the first exper-
iment, for each dataset, we run the two metaheuristic with
100 different seeds. The average classification accuracy and
the standard deviation of the learning set of each dataset is

Dataset META MR-Sort META Capa-MR-Sort

DBS 0.8400± 0.0456 0.8306± 0.0466
CPU 0.9270± 0.0294 0.9203± 0.0315
BCC 0.7271± 0.0379 0.7262± 0.0377
MPG 0.8174± 0.0290 0.8167± 0.0468
ESL 0.8992± 0.0195 0.9018± 0.0172
MMG 0.8303± 0.0154 0.8318± 0.0121
ERA 0.6905± 0.0192 0.6927± 0.0165
LEV 0.8454± 0.0221 0.8445± 0.0223
CEV 0.9217± 0.0067 0.9187± 0.0153

Table 3. Average and standard deviation of the classification ac-
curacy of the test set when 50 % of examples used as learning set
and the rest as test set
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xa, ya, x
′
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′
a ∈ R+

0 a ∈ A.

(15)

given in Table 4. The Capacitive-MR-Sort metaheuristic does
not always give better results than the MR-Sort one.

Dataset META MR-Sort META Capa-MR-Sort

DBS 0.9318± 0.0036 0.9247± 0.0099
CPU 0.9761± 0.0000 0.9694± 0.0072
BCC 0.7737± 0.0013 0.7700± 0.0077
MPG 0.8418± 0.0000 0.8418± 0.0000
ESL 0.9180± 0.0000 0.9180± 0.0000
MMG 0.8491± 0.0011 0.8508± 0.0005
ERA 0.7142± 0.0028 0.7158± 0.0004
LEV 0.8650± 0.0000 0.8650± 0.0000
CEV 0.9225± 0.0000 0.9225± 0.0000

Table 4. Average and standard deviation of the classification ac-
curacy of the learning set when using the MR-Sort and Capacitive-
MR-Sort models when using all the dataset as learning set

The average computing time required to obtain the results
presented in Table 4 is given in Table 5. We observe that
learning a Capacitive-MR-Sort model can take up to almost
3 times the time required to learn the parameters of a simple
MR-Sort model.

Dataset META MR-Sort META Capa-MR-Sort

DBS 3.0508 6.9547
CPU 3.1646 5.2069
BCC 3.3700 7.7545
MPG 4.4136 9.9294
ESL 3.8466 7.2495
MMG 6.1481 13.4848
ERA 5.9689 14.4875
LEV 5.8986 13.2356
CEV 11.1122 31.7042

Table 5. Average computing time (in seconds) required to find
a solution with MR-Sort and Capacitive-MR-Sort metaheuristic
when using all the examples as learning set

The two experiments show that using a more expressive
model does not always result in a better classification accu-

racy. This observation raises two questions. Firstly, in view of
the results obtained, one may doubt that the Capacitive-MR-
Sort extends much the original MR-Sort. For what type of
assignment data is the new model more flexible? Secondly, is
the metaheuristic well-adapted to learn Capacitive-MR-Sort
models? To answer these questions, more experimentations
have to be done.

7 Comments
We observe that using 2-additive weights instead of simple
additive weights in MR-Sort does not result in significant im-
provement of the 0/1 loss. It is somewhat surprising because
the model is more flexible when 2-additive weights are used.

In view of understanding better how the representation ca-
pabilities of an MR-Sort model can be improved by using
2-additive weights, we do the following experimentation. We
modify the MIP presented in section 3.1 to learn only the
weights and the majority threshold of an MR-Sort model on
basis of fixed profiles and assignment examples. The objec-
tive function of the MIP remains the minimization of the 0/1
loss. The MIP is used to learn the parameters of an MR-Sort
model composed of 2 categories, C1 � C2, 4 to 6 criteria, and
a fixed profile equals to 0.5 on all the criteria. Each of this
learning sets contains 2n alternatives, with n being the num-
ber of criteria of the model that is learnt. Performances of the
alternatives of the learning are either equal to 0 or 1 on each
criterion and the learning set is built such that each vector
of performances is represented once and only once. Alterna-
tives in the learning set are assigned either in C1 or C2 such
that monotonicity is guaranteed in assignments, i.e. an alter-
native, x, which has at least equal or better performances on
each criterion than another one, y, is never assigned in a least
preferred category than the category in which y is assigned.
In the experiment, we consider all the non-additive learning
sets, i.e. all the learning sets which are not fully compatible
with a simple additive MR-Sort model composed of n criteria.

Results of the experimentation are presented in Table 7.



Each row of the table contains the results for a given number
of criteria, n. The second column contains the percentage of
learning sets that are not compatible with a simple additive
MR-Sort model composed of n criteria, among all the learning
sets combinations. The last three columns contain the min,
max and average percentage of 2n examples that cannot be
restored by a simple additive model among the non-additive
learning sets. We observe that a MR-Sort model composed
of 4 criteria is, in worst case, not able to restore 6.2% of the
examples of the learning set (1 example on 16). With 5 and 6
criteria, the maximum 0/1 loss increases respectively to 9.4%
and 12.4%. We see that the proportion of the alternatives that
cannot be restored with a simple MR-Sort model is small.
This observation might explain the poor gain observed with
the Capacitive-MR-Sort metaheuristic compared to the MR-
Sort one.

n % non-additive MR-Sort
min. max. avg.

4 11 % 6.2 % 6.2 % 6.2 %
5 57 % 3.1 % 9.4 % 3.9 %
6 97 % 1.6 % 12.5 % 4.8 %

Table 6. Average, minimum and maximum 0/1 loss of the learn-
ing sets after learning additive weights and the majority threshold
of an MR-Sort model

8 Conclusion

In this paper, we proposed an extension of the MR-Sort
model by adding capacitive weights to the model. We called it
Capacitive-MR-Sort. We also modified the MIP presented in
[11] and the metaheuristic described in [17] in view of being
able to learn Capacitive-MR-Sort models. The MIP formu-
lation induces a lot of binary variables and is unsuitable for
problems involving large datasets. As we want to be able to
deal with real datasets, which are often large, we made ex-
periments with the metaheuristic. Tests have been done on
well-known datasets and showed that a more flexible model,
the Capacitive-MR-Sort, does not guarantee to get a better
classification accuracy. More experiments have to be done in
view of being able to better measure and compare the rep-
resentation ability of MR-Sort and Capacitive-MR-Sort mod-
els.

REFERENCES
[1] Bache, K., Lichman, M.: UCI machine learning repository

(2013), http://archive.ics.uci.edu/ml
[2] Bouyssou, D., Pirlot, M.: A characterization of concordance

relations. European Journal of Operational Research 167(2),
427–443 (2005)

[3] Bouyssou, D., Pirlot, M.: Further results on concordance re-
lations. European Journal of Operational Research 181, 505–
514 (2007)

[4] Cailloux, O., Meyer, P., Mousseau, V.: Eliciting ELECTRE
TRI category limits for a group of decision makers. European
Journal of Operational Research 223(1), 133–140 (2012)

[5] Chateauneuf, A., Jaffray, J.: Derivation of some results
on monotone capacities by Möbius inversion. In: Bouchon-
Meunier, B., Yager, R.R. (eds.) Uncertainty in Knowledge-
Based Systems, International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based
Systems, IPMU ’86, Paris, France, June 30 - July 4, 1986, Se-
lected and Extended Contributions. Lecture Notes in Com-
puter Science, vol. 286, pp. 95–102. Springer (1986), http:
//dx.doi.org/10.1007/3-540-18579-8_8

[6] Dias, L., Mousseau, V., Figueira, J., Clímaco, J.: An aggre-
gation/disaggregation approach to obtain robust conclusions
with ELECTRE TRI. European Journal of Operational Re-
search 138(1), 332–348 (2002)

[7] Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.:
An evolutionary approach to construction of outranking mod-
els for multicriteria classification: The case of the ELEC-
TRE TRI method. European Journal of Operational Research
199(2), 496–505 (2009)

[8] Grabisch, M.: The application of fuzzy integrals in multicri-
teria decision making. European Journal of Operational Re-
search 89(3), 445 – 456 (1996), http://www.sciencedirect.
com/science/article/pii/037722179500176X

[9] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., Witten, I.H.: The weka data mining software: An update.
SIGKDD Exploration Newsletter 11(1), 10–18 (Nov 2009),
http://doi.acm.org/10.1145/1656274.1656278

[10] Hüllermeier, E., Tehrani, A.: Efficient learning of classifiers
based on the 2-additive Choquet integral. In: Moewes, C.,
Nürnberger, A. (eds.) Computational Intelligence in Intelli-
gent Data Analysis, Studies in Computational Intelligence,
vol. 445, pp. 17–29. Springer Berlin Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-32378-2_2

[11] Leroy, A., Mousseau, V., Pirlot, M.: Learning the parame-
ters of a multiple criteria sorting method. In: Brafman, R.,
Roberts, F., Tsoukiàs, A. (eds.) Algorithmic Decision Theory,
Lecture Notes in Computer Science, vol. 6992, pp. 219–233.
Springer Berlin / Heidelberg (2011)

[12] Meyer, P., Pirlot, M.: On the expressiveness of the additive
value function and the choquet integral models. In: DA2PL
2012 Workshop From Multiple Criteria Decision Aid to Pref-
erence Learning. pp. 48–56 (2012)

[13] Mousseau, V., Figueira, J., Naux, J.P.: Using assignment ex-
amples to infer weights for ELECTRE TRI method: Some
experimental results. European Journal of Operational Re-
search 130(1), 263–275 (2001)

[14] Mousseau, V., Słowiński, R.: Inferring an ELECTRE TRI
model from assignment examples. Journal of Global Opti-
mization 12(1), 157–174 (1998)

[15] Ngo The, A., Mousseau, V.: Using assignment examples to
infer category limits for the ELECTRE TRI method. Journal
of Multi-criteria Decision Analysis 11(1), 29–43 (2002)

[16] Roy, B., Bouyssou, D.: Aide multicritère à la décision: méth-
odes et cas. Economica Paris (1993)

[17] Sobrie, O., Mousseau, V., Pirlot, M.: Learning a majority rule
model from large sets of assignment examples. In: Perny, P.,
Pirlot, M., Tsoukiás, A. (eds.) Algorithmic Decision Theory.
pp. 336–350. Springer (2013)

[18] Tehrani, A.F., Cheng, W., Dembczynski, K., Hüllermeier, E.:
Learning monotone nonlinear models using the Choquet in-
tegral. Machine Learning 89(1-2), 183–211 (2012)

[19] Yu, W.: Aide multicritère à la décision dans le cadre de la
problématique du tri: méthodes et applications. Ph.D. thesis,
LAMSADE, Université Paris Dauphine, Paris (1992)

[20] Zheng, J., Metchebon, S., Mousseau, V., Pirlot, M.:
Learning criteria weights of an optimistic Electre Tri
sorting rule. Computers & OR 49(0), 28 – 40 (2014),
http://www.sciencedirect.com/science/article/pii/
S0305054814000677

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/3-540-18579-8_8
http://dx.doi.org/10.1007/3-540-18579-8_8
http://www.sciencedirect.com/science/article/pii/037722179500176X
http://www.sciencedirect.com/science/article/pii/037722179500176X
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/978-3-642-32378-2_2
http://dx.doi.org/10.1007/978-3-642-32378-2_2
http://www.sciencedirect.com/science/article/pii/S0305054814000677
http://www.sciencedirect.com/science/article/pii/S0305054814000677

	1 Introduction
	2 MR-Sort and Capacitive-MR-Sort
	2.1 MR-Sort
	2.2 Capacitive-MR-Sort

	3 Learning the parameters of a MR-Sort model
	3.1 Mixed Integer Programming
	3.2 Metaheuristic

	4 Mixed Integer Program to learn a Capacitive-MR-Sort model
	5 Metaheuristic to learn a Capacitive-MR-Sort model
	6 Experimentations
	7 Comments
	8 Conclusion

