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Abstract. We consider the multicriteria ranking problem, and specif-
ically a ranking procedure based on reference points recently proposed
in the literature, named Ranking with Multiple reference Points (RMP)
[25, 8]. Implementing the RMP method in a real world decision prob-
lem requires to elicit the model preference parameters. This can be
done indirectly by inferring the parameters from stated preferences,
as in [21, 22, 12].

Learning an RMP model from stated preferences proves however to
be computationally extremely costly, and can hardly be put in practice
using state of the art algorithms. In this paper, we propose a Boolean
satisfiability formulation of the inference of an RMP model from a
set of pairwise comparisons which is much faster than the existing
algorithms.

1 Introduction

The multiple criteria ranking problem consists in computing a pre-
order on a finite set of alternatives A when these alternatives are
evaluated on multiple criteria. Many ranking methods have been pro-
posed in the literature to tackle this problem. Among ranking methods,
the so called outranking methods (see e.g., [13, 9]) proceed by com-
paring alternatives on each criterion, then aggregate these preference
relations relative to criteria into a ranking. Actually, with these meth-
ods, a ranking is not obtained directly. The preference relations on
each criterion are first aggregated into an outranking relation. This is
done for each pair of alternatives by considering only the preferences
between these alternatives on all criteria, without taking into account
the other alternatives. In such a way the independence of irrelevant
alternatives (IIA) property of the well known Arrow’s impossibility
theorem [1] is satisfied. The drawback is that the outranking relation
is not transitive in general due to the possible presence of Condorcet
cycles [10]. In order to obtain a ranking, a further step, called exploita-
tion is applied to the outranking relation. Transitivity is obtained at the
cost of loosing the IIA property (which is an unavoidable consequence
of Arrow’s theorem).

However, outranking methods are well-suited for ranking problems
involving qualitative criteria, as they only consider the ordinal aspect
of evaluation (as opposed to a cardinal aspect which requires assessing
trade-offs between differences of evaluations). A recently proposed
outranking based ranking method [25, 8], Ranking with Multiple ref-
erence Points (RMP), keeps the specificity of considering ordinal data
while fulfilling the IIA property. This statement apparently contradicts
Arrow’s theorem. Actually, this is not the case, due to the introduction
of an additional ingredient, namely the reference points.
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Respecting the IIA principle is particularly important when learning
ranking models from data (e.g., pairwise comparisons). In particular,
when the comparisons involve real alternatives, learning a ranking
model from comparisons can lead to a situation where: (i) the decision
maker states that a is better than b (a � b), (ii) a ranking modelM
is computed from a learning set (including a � b), but (iii) when
applyingM to the set of alternatives, b is ranked better than a.

To the best of our knowledge, RMP is the only outranking based
method which fulfils the IIA property; this ranking method is therefore
well suited to be put in practice using learning algorithms that learn
an RMP model from a set of pairwise comparisons. In our paper, we
propose efficient tools to learn RMP models from data.

The paper is organized as follows. Section 2 introduces the RMP
method. In Section 3, we present how to implement the RMP method
in practice using algorithms that learn an RMP from pairwise compar-
isons provided by the Decision Maker (DM). We propose, in Section
4, a standard sequence procedure to elicit an RMP model. Section
5 describes a new efficient algorithm that computes an RMP model
from a learning set. This algorithm is based on a Boolean satisfiabil-
ity formulation. We perform, in Section 6, an empirical analysis of
our algorithm to assess its performance as compared to the existing
literature. A final Section groups conclusions and further research
directions.

2 Ranking with Multiple Points
2.1 Reference points in multicriteria decision aid
Kahneman and Tversky were the first to identify clearly the role of
reference points in the formation of preferences in the context of
risky [16] and riskless decisions [27]. Reference based preferences
have since been studied (see [18, 19]) and multicriteria models using
reference points have been proposed to sort alternatives into categories
(see e.g. [6, 7]), and to rank alternatives ([25, 8]). In this paper we
consider the RMP ranking method [25].

2.2 An introductory example
To introduce how the Ranking with Multiple Points (RMP) method
proceeds, we consider a simple illustrative example in which a set of
cars are to be ranked from the best to the worst. We consider three
cars x, y and z evaluated on the following four criteria: Brakes ([0-
10] scale), Road holding ([0-10] scale), Price (e), and Acceleration
(seconds to accelerate from 0 to 100km/h). The first two criteria are
to be maximized, the last two are to be minimized. The performances
of cars are shown in Table 1.

The RMP ranking method makes use of preference parameters to
specify the decision maker judgment: (i) a set of reference points, and



Brakes Road holding Price Acceleration
(Max, [0,10]) (Max, [0,10]) (Min, e) (Min, sec.)

x 9.5 9.5 11.7 Ke 29.4 sec.
y 0.5 9.5 11.8 Ke 27.9 sec.
z 5 9.5 15.9 Ke 26.7 sec.
r2 8 8 12.0 Ke 28.0 sec.
r1 2 4 18.0 Ke 31.0 sec.

Table 1. Illustrative example

(ii) an importance relation on criteria coalitions (in this example, all
criteria are assumed equally important, and it is sufficient to count
criteria in coalitions to compare them).

In our example, we use two reference points (which are vectors of
evaluations), r1 and r2, such that r2j is better than r1j on each criterion
j. These two reference points define three segments of performances
on each criterion:

• better than r2 (which can be interpreted as “good”),
• between r1 and r2 (which can be interpreted as “intermediate or

fair”); and
• worse than r1 (which can be interpreted as “insufficient”).

The values of these points r1 and r2 on criteria are provided in
Table 1. For instance, on the criterion “Brakes”, any alternative eval-
uated 8 or above will be considered “good” (e.g., alternative x) and
any alternative evaluated lower than 2 will be considered “insuffi-
cient” (e.g., alternative y). In other terms, the reference points allow
to identify an ordered encoding for each criterion defined by 3 ordered
intervals of performances (A, B and C) as illustrated in Figure 1, such
that:

A performances above r2 on each criterion are denoted as A (which
can be interpreted as “good”).

B performances between r1 and r2 on each criterion are denoted as
B (which can be interpreted as “intermediate or fair”).

C performances below r1 on each criterion are denoted as C (which
can be interpreted as “insufficient”)

Figure 1. Graphical interpretation of Table 1

The RMP method ranks alternatives based on these ordered inter-
vals of performances. Table 2 shows the results of the encoding for the

3 alternatives considered in our example. For instance, z is encoded
B on criterion “Brakes” because z is worse than r2 but better than r1.

Brakes Road Holding Price Acceleration
x A A A B
y C A A A
z B A B A

Table 2. Results of the encoding procedure for the illustrative example

To compute a ranking, alternatives are not compared one to each
other but compared to the reference points. Alternatives are compared
to the first reference point r1. Considering two alternatives a and b,
a is preferred to b, noted a � b, if the coalition of criteria for which
alternative a is evaluated A or B (i.e. better than r1) is more important
than the coalition of criteria for which alternative b is evaluated A or
B (i.e., better than r1). In this example, criteria are assumed equally
important, so we just count the number of criteria. If a and b cannot
be distinguished with respect to their comparison to r1, then a and b
are compared to r2. If the number of criteria for which alternative a is
evaluated A (i.e. better than r2) is greater than the number of criteria
for which alternative b is evaluated A (i.e., better than r2), then a is
preferred to b, otherwise a is indifferent to b. In our example, we thus
have the following:

• Alternative x is better than y because x has evaluation A or B for
all criteria, while y has evaluation A or B for only three criteria (x
compares better to r1 than y does).

• Alternative x is better than z because x and z are both evaluated A
or B on all criteria (they compare equally to r1), but x is evaluated
A on three criteria while z is evaluated A only on two criteria (x
compares better to r2 than z does).

• Alternative z is better than y because z has evaluation A or B on
all criteria while y has evaluation A or B on three criteria only (z
compares better to r1 than y does).

2.3 The RMP ranking method

We consider A, a set of alternatives evaluated on n criteria. Let us
denote N = {1, 2, . . . , i, . . . , n} the set of criteria indices, and ai
denotes the evaluation of alternative a ∈ A on criterion i (in what
follows we will consider, without loss of generality, that preferences
increase with the evaluation on each criterion, i.e., the greater the
better). The RMP method is a method for ranking a finite set of
alternatives evaluated on several criteria [25].

To rank alternatives, RMP compares alternatives to reference points,
and then aggregates these comparisons into a final ranking. A domi-
nance structure can be assumed on the set of reference points without
loss of generality (for any RMP model using a set of reference points
without any dominance structure, there exist an equivalent RMP model
using a set of reference points with a dominance structure). RMP
makes use of two types of preference parameters:

• R = {r1, r2, . . . , rh, . . . , rm}, with rh = {rh1 , ..., rhi , ..., rhn},
where rhi denotes the evaluation of rh on criterion i;

• an importance relation on criteria coalitions, � ⊆ P(N ), where
� and ≡ represent the asymmetric and symmetric part of �.

RMP proceeds through the following three steps:



1. compute c(a, rh) = {i ∈ N : ai ≥ rhi }, a ∈ A, h = 1, . . .m,
the set of criteria on which alternative a is at least as good as the
reference point rh.

2. compare alternatives one to each other to define k preference re-
lations %rh relative to each reference point such that a %rh b iff
c(a, rh) � c(b, rh). In other words, a %rh b holds when a com-
pares better to rh than b does. We denote �rh (∼rh , respectively)
the asymmetric part of the relation %rh (the symmetric part of
%rh , respectively).

3. to rank two alternatives a, b ∈ A, consider sequentially the re-
lations %r1 ,%r2 , . . . ,%rk ; a is preferred to b if a �r1 b, or if
a ∼r1 b and a �r2 b, or . . . Hence, a and b are indifferent iff
a ∼rh b, for all h = 1 . . .m.

Rolland [25] proved that by proceeding in such a way, the computed
preference relations on alternatives are guaranteed to be transitive.
As mentioned earlier, a dominance structure on the set of reference
points can be assumed without loss of generality.

3 Implementing the RMP ranking method

To implement the RMP method in a decision aiding study, an inter-
action with the DM is required, so as to integrate her preferences,
hence set the values of the preference parameters involved in the RMP
method. A basic approach called direct elicitation consists in interact-
ing with the DM directly on the values of the preference parameters.
However, such an approach is not recommended as the DM usually
has no clear understanding of the semantics attached to the preference
parameters. Moreover, it imposes a strong cognitive burden on the
DM. Therefore, the literature frequently proposes an indirect elicita-
tion, in which the DM expresses holistic preferences (i.e., pairwise
comparisons of alternatives) from which the values of the preference
parameters are inferred (see e.g. [5, 15, 24]).

Recent literature (see [21, 28]) proposed indirect elicitation proce-
dures for the S-RMP method (a particular case of RMP in which the
criteria importance relation is additively representable). The Decision
Maker provides pairwise comparisons of alternatives from which the
S-RMP preference parameters (weights, reference points, and the
lexicographic order on reference points) are inferred. Two algorithms
were proposed:

• MIP-based algorithm. [28, 21] formulate the elicitation of a
S-RMP model as a mixed linear optimization problem. In this
optimization program, the variables are the parameters of the
S-RMP method, and additional technical variables which enable
to formulate the objective function and the constraints in a linear
form. The aim is to minimize the Kemeny distance (see [17])
between the partial ranking provided by the Decision Maker (i.e.
the comparisons) and the S-RMP ranking. The resolution of this
optimization program provides a guarantee that the elicited S-RMP
model best matches the pairwise comparisons in terms of the
Kemeny distance between the comparisons provided by the DM
and the S-RMP ranking.

• Metaheuristic algorithm. Another algorithm to indirectly elicit an
S-RMP model, from pairwise comparisons, was proposed by [22,
21]. Unlike the MIP version, this metaheuristic does not guarantee
that the inferred model is the one which minimizes the Kemeny
distance to DM’s statements. Indeed, the perspective is to obtain
an S-RMP model which fits the Decision Maker’s comparisons
“well” within a “reasonable” computing time. This metaheuristic

is based on an evolutionary algorithm in which a population of
S-RMP models is iteratively evolved.

The above mentioned algorithms suffer however from limitations:

• both algorithms only consider an additive representation of criteria
importance relation, which can be restrictive when interaction
between criteria occur;

• the MIP based approach is not able to deal with datasets whose
size correspond to real world decision problems (e.g. 10 criteria, 2
reference points and 50 comparisons);

• the heuristic approach is fast but is not always able to restore an
S-RMP model compatible with a set of comparisons, whenever it
exists.

To circumvent these limitations, two paths are possible:

• elicit an RMP model using a model-based elicitation strategy anal-
ogous to the one described in [3] for the NonCompensatory Sorting
model [6, 7]. This approach permits to elicit the RMP parameters
by asking the decision maker to make comparisons, and aims at
building the shortest questionnaire. We propose in Section 4 such
a procedure for RMP with one single preference point.

• Design an algorithm similar to the MIP approach that can han-
dle real-world size datasets, as done for the NonCompensatory
Sorting model [6, 7] to overcome computational issues of [20]
using a Boolean satisfaction (SAT) formulation, see [2]. In this
perspective, we propose, in Section 5, a SAT formulation which is
computationally efficient.

4 A procedure to elicit an RMP model
In this section, we restrict ourselves to RMP with a single reference
point, and we propose an elicitation procedure in which the DM an-
swers a sequence of questions that will lead to a complete knowledge
of the RMP parameters (the importance relation on coalitions, and the
reference point).

This procedure is structured in two consecutive phases: in the first
phase, the answers of the DM leads to define the � importance relation
on criteria coalitions, the reference point being unknown, while the
second phase aims at specifying the reference point. The possibility
to identify, in the first phase, the � relation without knowledge on
the reference point is based on the following remark. Consider the
alternative xA, with A ⊆ N , having the best possible evaluation
on criterion i ∈ A, and the worst possible evaluation on criterion
j ∈ N\A. if xA � xB , thenA�B and not [B�A] hold whatever the
reference point. Hence, it is possible to determine � in the absence of
knowledge on the reference point (note, however, that this is possible
only with RMP models involving a single reference point).

The first phase of the algorithm aims at eliciting the � relation.
Let us first recall that the relation � defined on P(N ) is transitive
and compatible with inclusion, i.e, for any pair of criteria coalitions
A,B ⊆ N , B ⊂ A⇒ A�B. Consider the “minimal” relation �0

containing pairs of coalitions corresponding to inclusion situations.
Consider two coalitions that are not in �0. A positive answer to the
question “is xA preferred to xB” will enrich �0 with the statement
A�B, and all transitive consequences (A′ �B′, for all A′, B′ such
that A ⊆ A′ and B′ ⊆ B).

Hence, the answer to the question “Is xA preferred to xB?” will
enrich relation �, and we can proceed so until � corresponds to a
complete pre-order. In other words, �0 should be completed to reach a
complete and transitive relation on the subsets ofN , in which case the



importance relation on coalitions is fully known. Obviously, the order
by which questions are posed should be defined so as to minimize the
total number of questions. This issue is not discussed in this paper.

The second phase of the algorithm aims at eliciting the reference
point r given the elicited relation �. In order to elicit ri the evaluation
of the reference point on criterion i, consider two coalitions A and B,
such that i /∈ B, A�B and not [A�B ∪ {i}]. By construction, we
have xA % xB , but not xA % xB∪{i}. Consider now the alternative
xki
B having the same evaluations as xB except on criterion i on which

its evaluation is ki. If xA % xki
B holds, then it means that ki < ri.

From the preceding implication, we can design a dichotomous search
to elicit ri from questions of the type “Is xA preferred to xki

B ?”.
Proceeding in this way for each criterion leads to elicit r. Note that ri
can also be elicited analogously considering two coalitions A and B,
such that i /∈ A, not A�B and A ∪ {i}�B.

5 Learning an RMP model from pairwise
comparisons: a SAT formulation model

In this section, we propose a new procedure to check whether a set of
pairwise comparisons can be represented by an RMP model with k
reference points using a Boolean satisfiability (SAT) formulation.

5.1 Boolean satisfiability (SAT)
A Boolean satisfaction problem consists of a set of Boolean variables
V and a logical proposition about these variables f : {0, 1}V →
{0, 1}. A solution v? is an assignment of the variables mapped to
1 by the proposition: f(v?) = 1. A binary satisfaction problem
for which there exists at least one solution is satisfiable, else it is
unsatisfiable. Without loss of generality, the proposition f can be
assumed to be written in conjunctive normal form: f =

∧
c∈C c,

where each clause c ∈ C is itself a disjunction in the variables or their
negation ∀c ∈ C, ∃c+, c− ∈ P(V ) : c =

∨
v∈c+ v ∨

∨
v∈c− ¬v,

so that a solution satisfies at least one condition (either positive or
negative) of every clause.

The models presented hereafter make extensive use of clauses
where there is only one non-negated variable (a subset of Horn
clauses): a ∨ ¬b1 ∨ · · · ∨ ¬bn, which represent the logical impli-
cation (b1 ∧ · · · ∧ bn) ⇒ a. It is known since Cook’s theorem [11]
that the Boolean satisfiability problem is NP-complete. Consequently,
unless P = NP , we should not expect to solve generic SAT instances
quicker than exponential time in the worst case. Nevertheless, efficient
and scalable algorithms for SAT have been – and still are – developed,
and are sometimes able to handle problem instances involving tens of
thousands of variables and millions of clauses in a few seconds (see
e.g. [23, 4]).

5.2 A SAT encoding of given comparisons in RMP
We consider a set BC =

⋃
j∈J {p

j � nj} of binary comparisons
provided by the DM, (p for “positive”, n for “negative”). Below, we
will use the following indices:

• h ∈ H is an index for reference points ordered by importance (i.e.
to compare alternatives, we consider r1, then r2 if needed, etc.);

• i ∈ N is the index for criteria;
• j ∈ J is the index for comparisons in the learning set, com-

posed of pairs pj � nj (p for “positive”, n for “negative”), where
pj = (pj1, p

j
2, . . . , p

j
n) and nj = (nj

1, n
j
2, . . . , n

j
n) are evaluation

vectors;

• k ∈ Xi denotes values taken on criterion i ∈ N (i.e. the evaluation
scale on criterion i is Xi =

⋃
j∈J {p

j
i , n

j
i}).

We introduce the following variables:

• xi,h,k take value 1 iff the value k is above the reference point rh

on criterion i (k ≥ rhi );
• yA,B take value 1 iff the criteria coalitionA is more important than

coalition B;
• zj,h take value 1 iff criteria for which alternative pj is above refer-

ence point rh are at least as important as those for which alternative
nj is above rh

(
c(pj , rh) � c(nj , rh)

)
;

• z′j,h take value 1 iff criteria for which alternative nj is above
reference point rh are at least as important as those for which
alternative pj is above rh

(
c(nj , rh) � c(pj , rh)

)
;

• dh,h′ take value 1 iff the reference point rh dominates reference
point rh

′
(rhi ≥ rh

′
i , ∀i ∈ N );

• sj,h take value 1 iff alternative pj is indifferent to alternative nj

with respect to all reference points rh
′
, with h′ < h, and pj

compares to reference point rh at least as well as nj does;

Definition 1 (SAT encoding for RMP). Consider BC =
{(pj , nj), j ∈ J } a set of binary comparisons (pj � nj). We define
the Boolean function φSAT

BC as the conjunction of clauses:

• For all criteria i ∈ N , for all reference point rh, for all pairs of
values k, k′ ∈ Xi such that k < k′:

xi,h,k ∨ ¬xi,h,k′ (1)

• For all pairs of reference points rh, rh
′

such that h < h′:

dh,h′ ∨ dh′,h (2a)

• For all criteria i ∈ N , for value k ∈ Xi, for all pairs of reference
points rh, rh

′
such that h 6= h′:

xi,h′,k ∨ ¬xi,h,k ∨ ¬dh,h′ (2b)

• For all pairs of coalitions A,B ⊆ N :

yA,B ∨ yB,A (3a)

• For all pairs of coalitions A,B ⊆ N such that A ⊂ B:

yB,A (3b)

• For all pairs of coalitions A,B,C ⊆ N :

¬yA,B ∨ ¬yB,C ∨ yA,C (3c)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,
for all reference point rh, h ∈ H:∨

i/∈A

x
i,h,p

j
i
∨
∨
i∈B

¬x
i,h,n

j
i
∨ yA,B ∨ ¬zj,h (4a)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,
for all reference point rh, h ∈ H:∨

i/∈A

x
i,h,n

j
i
∨
∨
i∈B

¬x
i,h,p

j
i
∨ yA,B ∨ ¬z′j,h (4b)

• For all pairs of coalitions A,B ⊆ N , for all comparisons j ∈ J ,
for all reference point rh, h ∈ H:∨
i∈A

¬x
i,h,p

j
i
∨
∨
i/∈A

x
i,h,p

j
i
∨
∨
i∈B

¬x
i,h,n

j
i
∨
∨
i/∈B

x
i,h,n

j
i
∨¬yB,A∨z′j,h

(4c)



• For each comparison j ∈ J :∨
h∈H

sj,h (4d)

• For each comparison j ∈ J , for all pairs of reference points
rh, rh

′
;h, h′ ∈ H such that h < h′:

zj,h ∨ ¬sj,h′ (5a)

• For each comparison j ∈ J , for all pairs of reference points
rh, rh

′
;h, h′ ∈ H such that h < h′:

z′j,h ∨ ¬sj,h′ (5b)

• For all reference points rh, h ∈ H:

¬z′j,h ∨ ¬sj,h (5c)

In Definition 1, clauses (1) impose that evaluation scale is monotone
with respect to reference points on each criterion i ∈ N . It states that
if evaluation k is above rh on criterion i, then any evaluation k′ > k
is also above rh on criterion i (we assume without loss of generality
that all criteria are to be maximized).

Clauses (2a-2b) impose a dominance structure on reference points.
(2a) check that, for any pair of reference points, either rh dominates
rh
′

or the reverse. Clauses (2b) relate variables xi,h,k to variables
dh,h′ stating that if, on criterion i, evaluation k is above reference
point rh, but not above reference point rh

′
, then rh

′
does not dominate

rh.
Clauses (3a-3c) guarantee that the importance relation � on criteria

coalitions is consistently defined. Clauses (3a) ensure relation � to
be complete, clauses (3b) ensure that � is compatible with inclusion,
and clauses (3b) impose transitivity.

Clauses (4a-4d) guarantee that the pairs pj , nj compare such that
pj � nj . Clauses (5a-5c) guarantee that, for any comparison j ∈ J ,
when pj and nj are separated by reference pointrh

′
, pj and nj are

indifferent with respect to all reference points rh such that h < h′.

6 Numerical investigation of the SAT formulation
In this section, we study the performance of the formulation proposed
in section 5.2, both intrinsic and comparative with respect to state-of-
the-art techniques. We use a state-of-the-art SAT solver, in order to
solve instances of the problem of learning an RMP model, given a set
of pairwise comparisons. We begin by describing our experimental
protocol, with some implementation details. Then, we provide the
results of the experimental study concerning the computation time of
our algorithm, and particularly the influence of the size of the learning
set, and the number of criteria, as well as elements of comparison
between existing approaches.

6.1 Experimental design
The algorithm we test takes as input a set of pairwise comparisons in
which alternatives compared are described by a performance tuple on
a set of criteriaN .

The performance is measured in practice, by solving actual in-
stances of the problem and reporting the computation time required.
This experimental study is run on an ordinary laptop running under
linux, equipped with an i7-6600U CPU at i2.6 GHz and 20 GB of
RAM.

Dataset generation.

In the scope of this paper, we only consider to use a carefully crafted,
random dataset as an input. On the one hand, the algorithm we de-
scribe is not yet equipped with the capability to deal with noisy inputs,
so we do not consider feeding it with actual preference data, such as
the one found in preference learning benchmarks [14]. On the other
hand, using totally random, unstructured, inputs makes no sense in
the context of algorithmic decision. Hence, we use a decision model
to generate it, and, in particular, a model compatible with the RMP
model. Precisely, we use a S-RMP model for generating the learning
set, a model that particularizes RMP by postulating the set of impor-
tance relation on criteria coalitions possess an additive structure (i.e.,
there is a set of weights wi, i ∈ N , with wi ≥ 0,∀i and

∑
i wi = 1,

such that A�B iff
∑

i∈A wi ≥
∑

i∈B wi). This choice ensures our
SAT formulation should succeed in finding the parameters of a model
compatible with all the pairwise comparisons in the input.

When generating a dataset, we consider the number of criteria |N |,
the number of comparisons |J |, and the number of reference points
m as experimental parameters.

We consider all criteria take continuous values in the interval [0, 1].
We generate a set of m reference points 〈r〉 by uniformly sampling
m numbers in the interval [0, 1] and sorting them in ascending order,
for all criteria; we then randomly re-order the reference points. We
generate criteria weights 〈w〉 by sampling |N | − 1 numbers in the
interval [0, 1], sorting them, and using them as the cumulative sum of
weights.

Finally, we sample uniformly pairs of tuples in [0, 1]N , defining
the performance of two alternatives3, compare these two alternatives
withM0 :=S-RMPm,〈r〉,〈w〉 and consequently determine which one
is pj and nj , j ∈ J .

Solving the SAT problem.

For a given number of criteria |N |, a given number of reference
points m, we check if a given set BC of binary comparisons can be
represented by the RMP model, by solving the corresponding SAT
formulation presented in §5.2, using the SAT solver CryptoMiniSAT
5.0.1 [26], winner of the incremental track at SAT Competition 2016
(http://baldur.iti.kit.edu/sat-competition-2016/). If the solver finds a
solution, then it is converted into parameters (〈rSAT〉,�SAT) for
an RMP model. The modelMSAT =RMP〈rSAT〉,�SAT yielded by
the program is then validated against the input. As the ground truth
M0 used to generate the binary comparisons is an S-RMP model
(and therefore an RMP model), we expect the solver to always find a
solution, and we expect the RMP model returned by the program to
always succeed at restoring the provided comparisons.

Ability of the inferred models to restore the original one.

In order to appreciate how “close” a computed modelMSAT is to
the ground truthM0 from which the comparisons were generated,
we proceed as follows: we sample a set of 10000 pairs of tuples in
X = [0, 1]N and compute the comparisons of these pairs according
to the original and computed RMP models (M0 andMSAT ). On this
basis, we compute err − rate the proportion of “errors”, i.e. pairs
which do not compare in the same way by both models.

3 Only pairs of tuples that are not in the dominance relation are kept.



6.2 Performance of the SAT formulation

We run the above described experimental protocol varying the vari-
ous values of the parameters: (i) the number of criteria |N | is cho-
sen among {3, 4, 5}, (ii) the number of comparisons |BC| is chosen
among {100, 200, ..., 1000}, and (iii) the number of reference points
m is chosen among {1, 2, 3}. For each value of the triplet of parame-
ters, we sample 10 S-RMP modelsM0, and record the computation
time (t) needed to provide a modelMSAT.

6.2.1 Results regarding computation time.

Figures 2 and 3 show the average computing time required to infer the
parameters of one RMP model when the number of examples, criteria
and reference points vary. We see in Fig. 2 that the computing time
seems to grow exponentially as a function of the number of criteria.
Indeed, when the reference set contains 500 alternatives, the average
computing times for 2 reference points and 3, 4 and 5 criteria are
respectively equal to about 1.5 seconds, 15 seconds and 75 seconds. It
is no surprise since the number of constraints in the SAT formulation
evolves as well exponentially as the number of criteria grows. When
we vary the number of reference points (Figure 3), we observe that the
same phenomenon occurs. Indeed, for 500 pairwise comparisons in
the learning set, the average computing time is about 20 seconds when
the model has one reference point, it grows up to ±60 seconds for
two reference points and up to ±250 seconds for 3 reference points.
For an RMP model with a fixed number of criteria and reference
points, we see both in Figures 2 and 3 that the computing time evolves
linearly when the number of pairwise assignment increases. Again,
this is no surprise since the number of constraints involved also tends
to increase linearly.
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Figure 2. Computing time as a function of the number of pairwise
comparisons for models involving 2 reference points and 3 to 6 criteria. Bars

represent standard deviation.

6.2.2 Results on the ability of the inferred model to restore
the original one.

To assess the ability of the SAT formulation to restore a model that
is the closest to the original one, we sample a set of 10000 pairwise
comparisons and we compute their relation of preference both with
the original model (M0) and the one learned with the SAT solver
(MSAT). Then we compute the proportion of binary comparisons that
have the same preference relation withM0 andMSAT.
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Figure 3. Computing time as a function of the number of pairwise
comparisons for models with 5 criteria, and 1 to 3 reference points. Bars

represent standard deviation.

In Figures 4 and 5, we observe that the average number of pairs of
alternatives from the test set that have the same preference relation
both withM0 andMSAT increases as a function of the number of
pairs in the learning set. When the number of criteria increases, the
number of pairs required to restore the original modelM0 increases.
Figure 4 shows that with 100 alternatives, it is possible to restore
on average more than 90 percent of the relations. With 6 criteria
and a learning set of 100 pairs, less than 80 percent of the pairwise
relations are restored. The same observation holds when the number
of reference points increases (see Figure 5).
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Figure 4. Average prediction accuracy as a function of the number of
pairwise comparisons for models involving 2 reference points, and 3 to 6
criteria. Test set of 10000 pairwise comparisons. Bars represent standard

deviation.

6.3 Discussion
Experimental results have shown that the algorithm was efficient
for inferring an RMP model from large sets of binary comparisons.
Indeed, the formulation is able to restore an RMP model composed
of 3 reference points and 5 criteria from 500 binary comparisons in
more or less 250 seconds. Furthermore, the algorithm performs well
in generalisation. With barely 100 alternatives, the SAT formulation
can learn an RMP model that predicts more than 70% of the binary
relations obtained with a S-RMP model.

It should be highlighted that such a performance proves this for-
mulation to be superior to existing algorithms. Indeed, MIP based
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Figure 5. Average prediction accuracy as a function of the number of
pairwise comparisons for models involving 5 criteria, and 1 to 3 reference
points. Test set of 10000 pairwise comparisons. Bars represent standard

deviation.

algorithms [28] are only able to handle a few dozens of pairwise
comparisons which is insufficient to infer an RMP model with good
generalization ability. Heuristic approaches [22, 21] can handle larger
datasets, but are not able to systematically restore an RMP compatible
input. A drawback of our approach is however its inability to easily
handle noisy input.

7 Conclusion

In this paper, we describe a SAT formulation in order to learn an RMP
model from a set of binary comparisons. Experimental results show
that the algorithm is efficient enough to deal with large datasets and
performs well in generalization. This formulation can be solved more
efficiently than the MIP [28] and is more acurate than the heuristic ap-
proach [22, 21]. Our proposal is a step forward toward the possibility
of eliciting an RMP model in an interactive process with the DM.

We see several research that should be pursued. The formulation
presented in this paper can only deal with datasets that do not contain
errors. A path to explore consists in finding a formulation that is able
to handle errors, for instance by using a MAXSAT formulation. In this
paper, the experiments have been done on artificial datasets. Another
path to explore consists in using it with real datasets like in [12].
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Notes in Artificial Intelligence, pp. 219–233, (2011). 2nd International
Conference on Algorithmic Decision Theory, ADT 2011, Piscataway,
NJ, USA.

[21] J. Liu, Preference elicitation for multi-criteria ranking with multiple
reference points, Ph.D. dissertation, CentraleSupélec, Université Paris-
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