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Abstract

Motivated by the elicitation or the learning of certain types of models for
classifying objects in ordered categories based on several criteria, we catego-
rize the positive Boolean functions up to 6 variables. We list all inequivalent
positive Boolean function and we determine the smallest degree k of the
k-additive capacity that can be used for separating their true points from
their false points. 1-additive Boolean functions are the well-studied thresh-
old functions. Each function is described by its set of minimal true points.
The latter correspond to the minimal winning coalitions of simple games.
They also correspond to the minimal sufficient coalitions in the multiple cri-
teria classification models we are interested in, namely, the MR-Sort and the
noncompensatory sorting model.

Keywords: multiple criteria sorting methods, positive Boolean functions,
ordered classification, winning coalitions, k-additive capacity

1. Introduction

Recently proposed multiple criteria classification methods (such as MR-
Sort and the NCS model) assign objects to predefined ordered categories by
using rules that can be expressed as positive (i.e., monotone non-decreasing)
Boolean functions. In these classification methods, one considers objects that
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are described by evaluations w.r.t. several criteria. Categories are character-
ized by their lower limit profile. These profiles specify minimal evaluations
on each criterion for an object being assigned to a category above the profile.
Actually, an object need not be at least as good as the profile’s value on all
criteria. In the majority rule sorting model (MR-Sort), a weight is assigned
to each criterion and a threshold is fixed. The MR-Sort rule [1, 2] assigns an
object to a category above the profile if it is at least as good as the profile
on a set of criteria and the sum of the weights of these criteria passes the
threshold value. Weights and threshold are used to describe which coalitions
(i.e., subsets) of criteria are sufficiently important to justify that the object
is assigned to a category above the profile. The noncompensatory sorting
(NCS) model [3, 4, 5] generalizes this type of rule to the case in which suffi-
cient coalitions of criteria cannot necessarily be described by weights and a
threshold. In this model the family of sufficient coalitions can be any upset
of the set of all subsets of criteria. In other words, the only property of the
set of sufficient coalitions is that any set which contains a sufficient coalition
is itself a sufficient coalition1.

To precisely show the relationship with monotone Boolean functions, we
consider the following example involving two categories. A student has to
take 4 exams to be admitted in a school. To be successful, she has to take
a mark of at least twelve (out of twenty) in each of these exams, with at
most one exception. In this case, the lower limit profile b of the category
“succeed” is the vector b = (12, 12, 12, 12) and the sufficient coalitions of
criteria are all subsets of at least 3 subjects for which the student’s mark is
at least 12. Denote the student’s marks by a = (a1, a2, a3, a4). The sufficient
“coalitions of successful subjects” can be represented by associating a weight
to each course, e.g., each exam receives a weight equal to 1/4, and choosing an
appropriate threshold, here 3/4. The assignment rule then reads: a succeeds
iff |{i : ai ≥ 12}| × 1/4 ≥ 3/4, which is a typical form for a MR-Sort rule.
Once the lower limit profile has been set, any student a can be represented

1Both the MR-Sort and the NCS models are particular cases of the Electre Tri
model, a method for sorting alternatives in ordered categories based on an outranking
relation (see [6], pp. 389-401 or [7], pp. 381-385). The general principle of outranking is
that an object is preferred to another, or to a profile, if it is at least as good as the latter
on a sufficient coalition of criteria without being unacceptably worse on any criterion.
The latter part is a non-veto condition. In this work, we consider that there are no
“unacceptably worse values” and therefore, only the first part of the condition matters.
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by a Boolean vector x = (x1, . . . , x4), with xi = 1 iff ai ≥ bi = 12 for all i.
Not all assignment rules based on sufficient coalitions can be represented

by additive weights and a threshold. For instance, assume that the exams
subjects are French language (1), English language (2), Mathematics (3) and
Physics (4). To be successful, a student has to take at least 12 points in one
of the first two and in one of the last two. If the weights of the four subjects
are respectively denoted w1, w2, w3, w4 and the threshold is λ and if we aim
to represent the rule using these weights and threshold, we see that these
parameters have to fulfill the following inequalities:

w1 + w3 ≥ λ
w1 + w4 ≥ λ
w2 + w3 ≥ λ
w2 + w4 ≥ λ
w1 + w2 < λ
w3 + w4 < λ

These conditions are contradictory. Indeed, summing up the first four in-
equalities, we get that λ ≤ 1/2

∑4
i=1wi, while summing up the last two

yields λ > 1/2
∑4

i=1wi.
In both these classification examples, we may represent any student a

by a Boolean vector x = (x1, . . . , x4), where xi = 1 (resp. 0) iff the stu-
dent’s mark ai is at least (resp. less than) the profile value bi = 12, for
i = 1, . . . , 4. The assignment rule (for a given profile) is a positive Boolean
function f(x1, . . . , x4) which takes value 1 iff student a is succeeding (true
point). Otherwise it takes value 0 (false point). In the first classification ex-
ample, f is a threshold Boolean function since the true points and the false
points can be linearly separated: x is a true point iff

∑4
i=1wixi ≥ 3/4 with

wi = 1/4, i = 1, . . . , 4. In the second classification example, the assignment
rule is a positive Boolean function that is no threshold function.

Assignment rules based on sufficient coalitions of criteria which cannot be
represented by additive weights and a threshold can always be represented by
using a monotone nondecreasing set function, or, more specifically, a capac-
ity, and a threshold. To further distinguish among these rules, the concept of
k-additive capacity [8] is useful. 1-additive capacities correspond to additive
weights as in MR-Sort. Of particular interest (in terms of the number of pa-
rameters involved) are the 2-additive capacities. In the language of Boolean
functions, a capacity is a monotone non-decreasing pseudo-Boolean function
which assigns value 0 to the empty set.
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NCS rules that can be represented by a k-additive capacity and a thresh-
old are related to k-additive positive pseudo-Boolean functions. In Boolean
functions language, what we aim at is to determine the positive Boolean
functions (i.e., NCS rules, with given limit profile) for which the true points
can be separated from the false points by means of a k-additive positive
pseudo-Boolean function (i.e. a k-additive capacity and a threshold). The
k = 1 case corresponds to the MR-Sort rule and the separating function is a
threshold Boolean function.

The questions dealt with in this paper are also closely related with the
theory of simple games. The sufficient coalitions of a NCS model corre-
spond to the winning coalitions in the theory of simple games (with the
slight difference that a winning coalition cannot be empty). Weighted simple
games correspond to MR-Sort models (and to threshold Boolean functions):
winning coalitions can be represented by weights attached to the agents or
players and a quota, i.e., a threshold [9]. NCS rules are related to k-additive
games [8, 10] since these correspond to k-additive positive pseudo-Boolean
functions. In the context of games, a concern similar to ours could be for-
mulated as follows. Assume that we do not know the value of a game, but
we know for each coalition whether the value of the game is satisfactory or
not. We then want to identify k-additive games, with the smallest possible
value of k, such that the satisfactory coalitions are characterized by a value
at least as large as a threshold and the others by a value smaller than this
threshold.

Our main motivation with this paper is to investigate the expressivity gap
between MR-Sort and the NCS model (without veto). In this perspective, we
analyze the possible families of sufficient coalitions up to a number of criteria
equal to 6. We start by listing all these families, which raises difficulties due to
the combinatorial and complex character of this issue. Then we study which
families of sufficient coalitions are representable by k-additive capacities (for
k = 1, 2, 3) and a threshold. These families are counted and listed. This
study aims first at an explicit description of the families of sufficient criteria,
up to n = 6, in order to support further more theoretical investigations and
also practical applications in decision analysis. As a by-product, it enables to
make simulations by drawing at random a MR-Sort model or a NCS model.
This proves useful e.g. for testing the efficiency of algorithms designed for
learning a NCS model [5] on the basis of assignment examples.

The rest of this paper is organized as follows. In Section 2, we state
the problem more formally, make connections between ordered classification
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rules, positive Boolean functions and simple games. We define k-additive
Boolean functions and we recall combinatorial results related to the enumer-
ation of families of sufficient coalitions. Section 3 describes how the sets of
sufficient coalitions were generated. In Section 4, we explain how we par-
titioned the families of sufficient coalitions; the size of each class of this
partition is computed. The next section explains how these results can be
exploited for simulation purposes. A short conclusion follows.

2. Sufficient coalitions, winning coalitions and Boolean functions

In this section we describe, in a formal way, the relationships between the
sufficient coalitions of a noncompensatory sorting model, positive Boolean
functions and the winning coalitions of a simple game. We state the question
that motivates us in these different languages.

2.1. Ordered classification
Let {1, . . . , n} be a set of criteria. For assigning an object evaluated on

these criteria to either the upper or the lower of two categories, the NCS
model (without veto, [3])

• determines the subset of criteria on which the object is at least as good
as a reference object called profile;

• assigns the object to the upper (resp. lower) category in case the subset
of criteria forms a sufficient (resp. insufficient) coalition of criteria.

A NCS rule (for classifying in two categories, without veto) is therefore char-
acterized by a profile and a set of subsets of the set of criteria {1, . . . , n},
which are called sufficient coalitions (SCs) of criteria. The other subsets of
criteria are called insufficient coalitions. The sole condition to be satisfied by
the set of SCs in a NCS model is to be an upset of the power set of the set of
criteria, ordered by inclusion ⊆, i.e., it satisfies the following condition. For
every subset of criteria A that is an SC, and for every B such that A ⊆ B,
we have that B is an SC. The set of insufficient coalitions is the complement
of the set of SCs in the power set of the set of criteria. It is a downset of
this set. Note that the trivial cases in which either all coalitions are SCs or
all coalitions are insufficient are not excluded.
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2.2. Positive Boolean functions
In the language of Boolean functions, the set of SCs (resp. insufficient

coalitions) of a NCS rule is the set of true (resp. false) points of a positive
Boolean function (BF). To put it more formally, we introduce some notation.
Let N = {1, . . . , n}. The set of subsets of N is denoted by P(N). The set
of Boolean vectors x = (x1, . . . , xn) of dimension n (xi = 0 or 1, for i ∈ N)
is denoted 2n. The sets P(n) and 2n are in one-to-one correspondence: each
x ∈ 2n is the characteristic vector 1A of some subset A of N . Each upset SC
of (P(N),⊆) corresponds to a positive BF f defined by f(x) = 1 iff x = 1A
for A ∈ SC.

An MR-Sort rule is a particular case of the NCS model. The set of SCs
of an MR-Sort rule can be determined by nonnegative weights wi, i ∈ N and
a threshold λ. A subset A ⊆ N forms an SC iff∑

i∈A

wi ≥ λ. (1)

We may assume w.l.o.g. that
∑n

i=1wi = 1. The positive BF f associated with
the set of SCs of an MR-Sort rule thus satisfies f(x) = 1 iff

∑n
i=1wixi ≥

λ. Such a positive BF is therefore a threshold BF: its true points can be
separated from its false points by an affine function. Learning a threshold
BF on the basis of examples of true and false points can be done efficiently,
for instance, by using linear programming. Of course, this transposes to
learning an MR-Sort rule, provided the profile is known. Note that the affine
separating function is never unique ([11], Theorem 9.4, p. 409).

As was shown by an example in the introduction, there are NCS models
the SCs of which cannot be represented using weights and a threshold as
in (1). In the perspective of devising learning methods for NCS models we
are interested in determining categories of sets of SCs that can be learned
efficiently. In the context of BFs, the categories of polynomial threshold func-
tions of degree k, for k ∈ N generalize the threshold functions. Instead of
separating the true points from the false points of a BF by an affine function,
general separating functions have been considered, namely multilinear poly-
nomials of degree k. These are pseudo-Boolean functions p(x) of the form

p(x) =
∑

A∈P(N);|A|≤k

c(A)
∏
i∈A

xi, (2)

where c(A) are coefficients that vanish for subsets A of N of cardinality
superior to k. For any BF f , there is a degree k ∈ N such that the true
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points and false points of f can be separated by a multilinear polynomial
p(x) of degree k [11, p. 407], in the following sense:

f(x) = 1 iff p(x) ≥ 0. (3)

The BF f is a polynomial threshold function of degree k if k is the smallest
possible degree of a function p(x) such that (3) holds (for more on this, see
[12, 13, 14, 15]). Polynomial threshold BFs of degree 1 are just threshold
BFs. All the latter are monotone. Polynomial threshold BFs of degree k > 1
are not necessarily monotone.

In the case f is a positive BF, its true points can be separated from its
false points by a monotone nondecreasing (pseudo-Boolean) polynomial of
degree k, for some k ∈ N . Actually, this is equivalent to separating the true
from the false points by a capacity µ and a threshold λ. A capacity is a
set function µ : P(N) → R+ which is monotone w.r.t. to set inclusion, i.e.,
for all A,B ⊆ N,A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity) and µ(∅) = 0. A
capacity can be given by means of its Möbius transform m. One has, for all
A ⊆ N :

µ(A) =
∑
B⊆A

m(B) (4)

where m is a set function P(N) → R which satisfies
∑

B⊆N m(B) = 1 and∑
B:i∈B⊆Am(B) ≥ 0, for all i ∈ N and A : i ∈ A ⊆ N [16] (see also [10],

p. 53). A capacity is k-additive if its Möbius transform vanishes for subsets
of size larger than k, i.e., m(A) = 0 for all |A| > k. We have that a positive
BF f is separable in the sense of (3) by a monotone nondecreasing (pseudo-
Boolean) polynomial p of degree k (for some k ∈ N) iff it is separable by a
k-additive capacity µ and a threshold λ in the following sense: for x = 1A,

f(x) = 1 iff µ(A) ≥ λ. (5)

This result is easy to prove (since we did not find it formally established in
the literature, we provide the interested reader with a proof in Appendix A).

Definition 1 (k-additive Boolean function). A positive Boolean function
f is called k-additive if k is the smallest integer such that the true points of f
can be separated from its false points by a monotone non-decreasing pseudo-
Boolean polynomial of degree k.

A 1-additive Boolean function is a threshold function.

7



2.3. Simple games
The connection with simple games is direct. A simple game v (also called

0-1 capacity [10, p. 42]) is a monotone nondecreasing set function on N ,
which only takes the values 0 or 1 and is such that v(∅) = 0. Simple games
correspond to positive BFs which take value 0 on the null binary vector. The
sets on which the game v has value 1 (which correspond to the true points
of the associated positive BF), are called the winning coalitions of the game.
They form an upset of P(N). The set of sufficient coalitions of a NCS model
is the set of winning coalitions of a simple game (except in the trivial case of
a NCS model for which all coalitions are sufficient). Weighted simple games
correspond to MR-Sort models and to threshold BFs. [8] has introduced the
notion of k-additive games (see also [10, p. 73]). The winning coalitions
of k-additive simple games are the coalitions that fulfill µ(A) ≥ λ for some
k-additive capacity µ and a threshold λ.

2.4. Minimal sufficient coalitions
In the rest of the paper, we use “sufficient coalitions” (SCs) as a generic

term referring to subsets of N corresponding to the true points of a n-
variables positive BF or to the winning coalitions of a simple game of n
players (including a trivial game in which the empty coalition is a winning
one). Insufficient coalitions are the subsets of N that are no SC.

From the previous section we know that the set of SC can be specified
by an inequality such as (5) with µ, a k-additive capacity for some k. In a
preference learning perspective, this representation may be at an advantage
since it allows to use powerful optimization techniques (see [17] for the learn-
ing of a NCS model on this basis)2. As was the case for k = 1, the capacity
and threshold used for representing a family of SCs are never unique.

In the sequel, we concentrate on parsimonious representations, i.e., rep-
resentations of a family of SCs as the set of coalitions A satisfying (5), using
a k-additive capacity, with as small as possible k. The smaller k, the smaller
the number of parameters to identify capacity µ, for instance, in a learning
process. If k = 1, the family of SCs can be represented by an inequality
of type (1), which involves determining the value of n + 1 parameters (the
weights wi and the threshold λ). If a family of SCs is representable using
a 2-additive capacity, then we can write µ(A) =

∑
i∈Ami +

∑
i,j∈A,i 6=j mij,

2In [17], the NCS model without veto is called capacitive MR-Sort model.
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n D(n) R(n)
0 2 2
1 3 3
2 6 5
3 20 10
4 168 30
5 7581 210
6 7828354 16353
7 2414682040998 490013148
8 56130437228687557907788 ?

Table 1: Known values of the Dedekind numbers, D(n), and of the number of inequivalent
families of SC, R(n).

where we abuse notation denoting m({i}) by mi and m({i, j}) by mij. In
this case, learning µ requires the determination of n(n+1)

2
+ 1 parameters.

The set of SCs may be large (typically exponential in n), but one can
avoid listing them all. A minimal sufficient coalition (MSC) is an SC which
is not properly included in another SC. Knowing the set of MSCs allows to
determine all SCs since a coalition is sufficient as soon as it contains a MSC.
A family of MSCs can be any collection of subsets of N such that none of
them is included in another. In other words, a set of MSCs is an antichain in
the set of subsets of N (partially) ordered by inclusion. It is well-known that
the number of antichains in the power set of N is D(n), the nth Dedekind
number ([18], sequence A000372). These numbers grow extremely rapidly
with n and no exact closed form is known for them. These numbers have
been computed up to n = 8; these values appear in the second column of
Table 1.

Note that MSCs correspond to minimal true points of positive Boolean
functions. Since its minimal true points characterize a positive BF [11, Theo-
rems 1.13 and 1.26], the Dedekind numbers D(n) are the numbers of positive
Boolean functions in n variables. In game theory, MSCs correspond to min-
imal winning coalitions. The number of simple games with n players in
minimal winning form [19, 20] equals D(n)− 1 (the empty set is excluded as
a winning coalition by definition of a simple game).

One way of simplifying the study of the families of SCs consists in keeping
only one representative of each class of equivalent families of SCs. Two fami-
lies will be considered as equivalent, or isomorphic, if they can be transformed
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one into the other just by permuting the labels of the elements. Consider
e.g. the following family of minimal SCs for n = 4: {2, 4}, {2, 3}, {1, 3, 4}.
It consists of 2 subsets of 2 elements and one of 3 elements. There are 12
equivalent families that can be obtained from this one, by permuting the
elements’ labels (the element which does not show up in the set of 3 can be
chosen in 4 different ways and the two elements which distinguish the two
pairs can be chosen in 3 different ways). The number R(n) of inequivalent
families of SCs is known for n = 0 to n = 7 ([18], sequence A003182). R(7)
was only recently computed by Stephen and Yusun [21]. Table 1 lists the
known values of R(n).

Finally we recall Sperner’s theorem ([22], pp. 116-118), a result that will
be useful in the process of generating all possible families of SCs. The max-
imal size of an antichain in the power set of a set of n elements is

(
n
bn/2c

)
.

Hence the latter is the maximal number of sets in a family of minimal SCs.

3. Listing the families of minimal sufficient coalitions

For generating all families of MSCs and selecting a representative of each
class of equivalent families, we follow a strategy similar to the one used in [21].
We describe it briefly. The families of MSCs can be partitioned according
to their type (called “profile” in [21]). The type of a family of MSCs is an
integer vector (k1, k2, . . . , kn), where ki represents the number of coalitions of
i elements in the family. For instance, the family {{2, 4}, {2, 3}, {1, 3, 4}}, for
n = 4, is of the type (0, 2, 1, 0), since it involves two coalitions of 2 elements
and one of 3. For any feasible type,

∑n
i=1 ki ≤

(
n
bn/2c

)
, due to Sperner’s

theorem.
The listing algorithm roughly proceeds as follows:

1. generate all type vectors (k1, k2, . . . , kn) in lexicographic increasing or-
der;

2. for each type, generate all families of subsets of N having the right
type and eliminate those that are not antichains, i.e. those involving a
subset that is included in another subset;

3. for each type and for each family of this type, the list of remaining fami-
lies is screened for detecting families that are equivalent, counting them
and eliminating them from the list of families of the type considered.

This algorithm outputs a list containing a representative of each class of
equivalent families of MSCs for each type.
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Type Representative # equivalent
(1,0,0) {{1}} 3
(2,0,0) {{1}, {2}} 3
(3,0,0) {{1}, {2}, {3}} 1
(0,1,0) {{1,2}} 3
(1,1,0) {{1}, {2, 3}} 3
(0,2,0) {{1, 3}, {2, 3}} 3
(0,3,0) {{1, 2}, {1, 3}, {2, 3}} 1
(0,0,1) {{1,2,3}} 1
Total 8 18

Table 2: Inequivalent families of minimal sufficient coalitions for n = 3

Example. For n = 3, the inequivalent families of MSCs, with their number
of equivalent versions, are displayed in Table 2.

Remarks.

1. There exist two additional families which do not appear in Table 2:
• the empty family, corresponding to the case in which no coalition

is sufficient (or winning). For a sorting procedure, this means that
all objects are assigned to the “bad” category. This corresponds
to the BF f ≡ 0.
• the family of which the sole element is the empty set. This is the

only case which does not correspond to a simple game (by defini-
tion). It corresponds to the sorting rule that assigns all objects to
the “good” category. It also corresponds to the BF f ≡ 1.

Adding these two extreme cases to the counts in the last line of Table
2 yields values that are consistent with Table 1.

2. For n = 3, every possible class type has a single representative. For
larger values of n, this is no longer the case. For instance, for n = 4,
we have 3 inequivalent representatives for type (0, 3, 0, 0):

Type Representative # equivalent
(0,3,0,0) {{1, 3}, {1, 2}, {3, 4}} 12
(0,3,0,0) {{2, 4}, {1, 2}, {1, 4}} 4
(0,3,0,0) {{2, 4}, {3, 4}, {1, 4}} 4

These three inequivalent families are the three sorts of non-isomorphic
3-edge graphs on 4 vertices displayed in Figure 2.
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1 2

3 4

1 2

3 4

1 2

3 4

Figure 1: Graph representation of type (0,3,0,0) inequivalent families of SCs on 4 elements

3. In the sequel, in the absence of ambiguity, we drop the brackets around
the coalitions and the commas separating the elements of a coalition
in order to simplify the description of a family of SCs; for instance,
the first family of type (0,3,0,0) above will be denoted by : {13, 12, 34}
instead of {{1, 3}, {1, 2}, {3, 4}}.

In order to make the algorithm sketched above more efficient, we imple-
mented the three properties linking the types of MSCs families coined by
Stephen and Yusun. For the sake of conciseness we do not describe them,
referring the reader to lemma 2.4 in [21].

Using this algorithm on a cluster, we computed the list of all inequiv-
alent families of MSCs for n = 2 to n = 6. The results, grouped by type,
are available at http://olivier.sobrie.be/shared/mbfs/. For illustrative
purposes, the case n = 4 is in Appendix B.

4. Partitioning the families of sufficient coalitions

4.1. Checking representability by a k-additive capacity
Our main goal in this section is to partition the set of families of MSCs,

for fixed n, in categories Ck, which are defined as follows.

Definition 2. A family of sufficient coalitions belongs to class Ck if

1. there is a normalized k-additive capacity µ and a non-negative real num-
ber λ such that every coalition A in the family satisfies the inequality
µ(A) ≥ λ, while the other coalitions do not satisfy this condition;

2. k is the smallest integer for which the latter holds.

12
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Note that a family of SCs belongs to class Ck if and only if it is the set
of minimal true points of a k-additive Boolean function. It is clear that all
equivalent families of MSCs belong to the same class Ck. Hence it is sufficient
to check for one representative of each class of equivalent families of MSCs
whether or not it belongs to Ck.

The checking strategy is the following. For each inequivalent family of
MSCs (listed as explained in Section 3), we iteratively check whether it be-
longs to class Ck, starting from k = 1 and incrementing k until the test is
positive (this will occur at the latest for k = n). The test can be formulated
as a linear program. We have to write constraints imposing that µ(A) ≥ λ
for each sufficient coalition A and that the same inequality is not satisfied for
all other coalitions, i.e., the insufficient ones. It is enough to write these sorts
of constraints only for the minimal SC and for the maximal insufficient coali-
tions. The set of minimal sufficient (resp. maximal insufficient) coalitions
will be denoted SCMin (resp. ICMax).

To formulate the problem as a linear program, we use formula (4), which
expresses the value of the capacity µ as a linear combination of its associated
interaction function m. This enables to control the parameter k which fixes
the k-additivity of the capacity. When checking whether a family of MSCs
belongs to class Ck, we set the values of the variables m(B) to 0 for all sets B
of cardinality greater than k; the remaining values of the interaction function
are the main variables in the linear program. The following constitutes the
general scheme of the linear programs used for each class Ck:

max ε
µ(A) ≥ λ ∀A ∈ SCMin
µ(A) ≤ λ− ε ∀A ∈ ICMax
µ(A) =

∑
B⊆A

m(B) ∀A ∈ SCMin ∪ ICMax∑
B:i∈B⊆A

m(B) ≥ 0 ∀i ∈ N

and ∀A ⊆ N∑
B⊆N

m(B) = 1

λ, ε ≥ 0

(6)

Note that the variables m(B) are not necessarily positive (except for
|B| = 1). To fix the ideas, we show how to instantiate the third, fourth and
fifth constraints in the cases k = 1 and k = 2.
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• k = 1 : 1-additive capacity

. µ(A) =
∑

i∈Ami, ∀A ∈ SCMin ∪ ICMax

. mi ≥ 0, ∀i ∈ N

.
∑

i∈N mi = 1,

where mi stands for m({i})

• k = 2 : 2-additive capacity

. µ(A) =
∑

i∈Ami +
∑

i,j∈A, i6=j mij, ∀A ∈ SCMin ∪ ICMax

. mi +
∑

j∈A, j 6=imij ≥ 0, ∀i ∈ N and ∀A 3 i, A ⊆ N

.
∑

i∈N mi +
∑

i,j∈N, i 6=j mij = 1,

where mi stands for m({i}) and mij for m({i, j}).

Writing the constraints for the 3-additive case requires the introduction of a
third family of variablesmijl for each subset {i, j, l} of three different elements
of N (in addition to the already introduced variables mi and mij).

4.2. Results
For n = 1 to 6 and for each family in the list of inequivalent families of

MSCs, we checked whether this family belongs to Ck, starting with k = 1
and incrementing its value until a positive answer is reached. The results are
displayed in Table 3, regarding the number and proportion of inequivalent
families in classes C1, C2 and C3. Up to n = 6, inclusively, there are no families
in classes C4 or above, which means that all families can be represented
using a 3-additive capacity (in the worst case). Up to n = 5, inclusively,
2-additive capacities are sufficient. Table 4 represents a similar information
but each family in the list of inequivalent families is weighted by the size
of the equivalence class it represents. In other words, this is the result that
would have been obtained by checking all families of MSCs for belonging to
class C1, C2 or C3.

The information displayed in Table 3 (resp. 4) is represented in graphical
form in Figure 2 (resp. 3). The cases of 0, 1 and 2 elements need not be rep-
resented since all families belong to class C1. These figures clearly show that
the proportion of families that can be represented by means of a 1-additive
capacity, i.e. by additive weights, decreases quite rapidly with the number
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n C1 C2 C3 R(n)
0 2 (100.0 %) 0 (00.00 %) 0 (00.00 %) 2
1 3 (100.0 %) 0 (00.00 %) 0 (00.00 %) 3
2 5 (100.0 %) 0 (00.00 %) 0 (00.00 %) 5
3 10 (100.0 %) 0 (00.00 %) 0 (00.00 %) 10
4 27 (90.00 %) 3 (10.00 %) 0 (00.00 %) 30
5 119 (56.67 %) 91 (43.33 %) 0 (00.00 %) 210
6 1113 (06.81 %) 14902 (91.13 %) 338 (02.07 %) 16 353

Table 3: Number and proportion of inequivalent families of MSCs that are representable
by a 1-, 2- or 3-additive capacity

n C1 C2 C3 D(n)
0 2 (100.0 %) 0 (00.00 %) 0 (00.00 %) 2
1 3 (100.0 %) 0 (00.00 %) 0 (00.00 %) 3
2 6 (100.0 %) 0 (00.00 %) 0 (00.00 %) 6
3 20 (100.0 %) 0 (00.00 %) 0 (00.00 %) 20
4 150 (89.29 %) 18 (10.71 %) 0 (00.00 %) 168
5 3 287 (43.36 %) 4 294 (56.64 %) 0 (00.00 %) 7581
6 244 158 (03.12 %) 7 438 694 (95.02 %) 145 502 (01.86 %) 7 828 354

Table 4: Number and proportion of all families of MSCs that are representable by a 1-, 2-
or 3-additive capacity

of criteria. In contrast, the proportion of families that can be represented by
a 2-additive capacity grows up to more than 91% from n = 3 to n = 6. The
proportions slightly differ depending on whether only inequivalent families
or all families are taken into account. One can observe that the proportion
of families in class C2 is a bit larger when considering all families (Table 4
and Figure 3).
Examples. As a matter of illustration, we describe a few examples for
n = 4 and n = 6. The list of all inequivalent MSCs for n = 5, which
are not representable by a 1-additive capacity, is displayed in appendix B.
The categorization in classes Ck is available at http://olivier.sobrie.be/
shared/mbfs/ for n = 4, 5, 6.

1. Here are the three families of MSCs on 4 elements that cannot be
represented using a 1-additive capacity (they can be by a 2-additive
capacity).
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Figure 2: Proportion of inequivalent families of MSCs in classes C1, C2, C3
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Figure 3: Proportion of all families of MSCs in classes C1, C2, C3

Type Representative # equivalent
(0,2,0,0) {12, 34} 3
(0,3,0,0) {13, 12, 34} 12
(0,4,0,0) {13, 14, 23, 24} 3

These three inequivalent families yield, by permutations of the elements
labels, a total of 18 families that can only be represented using a 2-
additive capacity.
The last inequivalent family is precisely the example that we used in
Section 1 to show that not all families of SCs can be represented by a
1-additive capacity. In contrast, it can be represented, for instance, by
setting m1 = m2 = m3 = m4 = 1/6 and m13 = m14 = m23 = m24 =

16



1/12, while the other pairwise interactions m12 and m34 are set to 0.
We then have: µ(13) = µ(14) = µ(23) = µ(24) = 5/12 while µ(12) =
µ(34) = 4/12. Setting the threshold λ to 9/24 allows to separate
the sufficient coalitions from the insufficient. Such a representation is
never unique. For example, another capacity is obtained by setting
m1 = m2 = m3 = m4 = 1/3, m12 = m34 = −1/6 and m13 = m14 =
m23 = m24 = 0. We have: µ(13) = µ(14) = µ(23) = µ(24) = 2/3 while
µ(12) = µ(34) = 1/2. Setting the threshold λ to 7/12 also separates
the sufficient from the insufficient coalitions.
Note that the second example, a family of type (0,3,0,0), already ap-
peared in Remark 2 after Table 2.
Note also that the first and the last example are complementary in an
obvious sense. These families form a bipartition of the set of all pairs of
elements. This complementarity is related to the first property allowing
to speed up the enumeration of the families of MSCs used in [21] and
mentioned at the end of Section 3. In view of the 2-additive capacity
used in the third example, it is straightforward to build a 2-additive
capacity for the first example. Therefore, both families belong to class
C2.

2. Here are two examples of inequivalent families of MSCs on 6 elements
that are not representable by a 2-additive capacity but require a 3-
additive capacity. There are 338 such inequivalent families which yield,
through permutations, a total of 145 502 families3. A simple example of
type (0,0,4,0,0,0) is the following family of MSCs: {136, 234, 125, 456}.
There are 30 equivalent families that can be derived from this family
through permutations. Another, much more complex example is of the
type (0,1,7,1,0,0). The MSCs are {135, 256, 345, 36, 234, 456, 1245, 146, 123}.
There are 360 equivalent families that can be obtained through permu-
tations.
Among the 338 families belonging to C3, no MSC consists of a single
criterion; none of them involves 5 elements. The largest number of
MSCs in such a family is 16, the maximal cardinality of a family of
MSCs on 6 elements being the Sperner number 20.

3If all permutations of the elements labels were yielding different families, the total
number of families would be 338× 720 = 243 360
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4.3. What about n > 6 ?
Stephen and Yusun [21] have computed the number of inequivalent fam-

ilies of MSCs up to n = 7. Categorizing the families of MSCs in classes
Ck for n = 7, with the same method we used in the case n ≤ 6 cannot be
envisaged. We do not only have to generate and store the inequivalent fami-
lies of MSCs. In addition, for each family, we have to compute the maximal
insufficient coalitions, write and solve usually more than one linear program
in order to determine the minimal value of k for which the family belongs to
Ck. The order of magnitude of the time needed for categorizing each family
out of the 16 353 families for n = 6 is about 1 second, which amounts to a
total computing time of more than 4 hours. Since, the number of inequiva-
lent families of MSCs for n = 7, R(7), is more than 30 000 times R(6), using
the same method is too time-consuming. Establishing properties that allow
to categorize some families of MSCs without solving linear programs is an
interesting research question.

As early as 1970, Muroga, Tsuboi and Baugh [23] managed to compute
the number of inequivalent threshold functions, i.e., the cardinal of the class
C1 of inequivalent families of MSCs, up to n = 8. There are 29 375 (resp.
2 730 166) threshold functions for n = 7 (resp. n = 8). The authors strat-
egy consists of identifying threshold functions in a (relatively) small class of
BF’s, which is known to contain them all. Linear programming was used
to identify threshold functions in this class (see [23, 24] for more detail).
Enumerating the threshold functions up to n = 8 was made possible by a
detailed knowledge of the properties of these functions (a very active topic in
switching theory and threshold logic in the 60’s). Such a detailed knowledge,
for the class C2, for instance, is not available.

While extending the classification of families of MSCs for n ≥ 7 is not
straightforward, it is worth noting that asymptotic formulas are known both
for the number of monotone BF’s [25] (see also [26], p. 933) and the number
of threshold functions [27] (see also [12], p. 561). We are not aware of
asymptotic results for the sizes of classes Ck, for k ≥ 2.

5. Applications

The above results, although limited to 6 elements or criteria, can be used
for different purposes. We focus on two applications in ordered classification
based on multiple criteria.

18



5.1. Selection of a sorting model in view of learning a classification
Classifying objects described by Boolean vectors in two categories in a

monotone nondecreasing way is equivalent to determine a positive Boolean
function. Efficient learning or elicitation by queries of a BF has been ex-
tensively studied (see e.g., [12, 28]). The MR-Sort or the NCS rules classify
objects represented by their evaluations on n criteria, which usually are not
binary values. Therefore, eliciting or learning a MR-Sort or a NCS model
(without veto) involves the determination of an additional element, namely
the lower limit profile of the upper category. In these models, the limit pro-
file allows to binarize the evaluations depending on whether each of them is
above or below the corresponding value of the limit profile. The object is
subsequently assigned to a category by means of a positive BF applied to the
Boolean representation of the object w.r.t. the limit profile.

The algorithm proposed in [2, 5] to learn a MR-Sort or a NCS model
on the basis of large sets of assignment examples proceeds by iterating two
phases. Starting from an initial estimate of the profile, a k- additive capacity
which maximizes the number of examples correctly assigned is determined by
solving a linear program. Then the profile is modified, without changing the
capacity, in order to improve the rate of correct classification. The process
is then iterated with the new profile. Choosing an appropriate value of k
has important consequences in this process. Large values of k lead to linear
programs involving many variables (as shown in Section 4.1). This study
shows that 1-additive capacities (corresponding to a MR-Sort model) are
enough up to n = 4 criteria. Up to n = 6, in most of the cases (93% in
terms of inequivalent families of MSCs and more than 96% if we consider
all families of MSCs), a 2-additive capacity is enough. Obviously, it would
be useful to know which is the most frequent class of k-additive BFs for
n ≥ 7 and have an estimation of the distribution of positive BFs among the
k-additivity classes.

5.1.1. Simulation
Recently, methods have been proposed to learn variants of the Elec-

tre Tri sorting model on the basis of assignment examples [1, 29, 2, 17].
It has also been done [30] for a ranking method based on reference points
proposed by Rolland [31, 32]. Consider e.g. a learning algorithm designed
to learn a MR-Sort model, as in [2]. Real data sets can be used to test
the performance of the algorithm. But for learning algorithms which aim
at selecting a rule in a specific family of sorting rules, it is also needed to
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perform the following test, with artificial data. When a set of assignment
examples is generated by a known MR-Sort model, we want to check whether
the algorithm, when applied to these examples, learns a model similar to the
original one. If some noise is added to the learning set, one expects that the
algorithm remains robust. In order to design such tests, we have to draw at
random a MR-Sort model, i.e. the profiles, the criteria weights and a thresh-
old. Drawing the profiles and the threshold at random does not raise major
problems. An algorithm for drawing weights summing up to 1 in a uniform
way is also well-known [33].

In order to perform the same type of tests in the case of the NCS model
(without veto), we are facing a difficulty. How to draw a capacity at random,
or more particularly, a k-additive capacity? How can one define a uniform
distribution on the set of capacities? On second thought, we moved to an-
other formulation of this question. What we have to do is to draw at random,
uniformly (in some sense), an MR-Sort rule or a NCS rule (without veto), not
a capacity. And this makes a difference, since the representation of a NCS
rule by an inequality involving a capacity and a threshold is not unique (as
observed previously), hence there is a representation bias in this approach.
Note that this remark also applies to drawing at random an MR-Sort model.
The alternative is thus to select a rule at random, i.e. a family of MSCs.
That’s what our results allow to do, up to n = 6. There is no need to test
the algorithm for several equivalent versions of the same rule (i.e. for families
of MSCs that only differ by a permutation of the criteria labels). We can
thus sample the set of inequivalent families (each weighted proportionally to
the size of its equivalence class). Note that the lists of inequivalent families
also permit to consider non-uniform distributions and to draw at random
from them according to an arbitrary probability distribution on the families.

6. Conclusion

In this work, we explored the families of minimal sufficient coalitions as
they appear in sorting models such as MR-Sort and NCS. These families are
in one-to-one correspondence with positive BFs, of which they are the sets of
minimal true points. This exploration is limited to small numbers of criteria
because of the huge number of such models. Our goal was at least twofold:

1. to provide a detailed picture of the possible families of SCs for as many
criteria as we could; this information could help further investigations
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related in particular to the characterization of the families of SCs that
can be separated from the insufficient ones by an inequality involving
a k-additive capacity. In other words, this could help in the study of
k-additive BFs.

2. to make available a list of the possible sorting rules in the NCS model,
in order to enable to draw a rule at random according to any specified
probability distribution and use it in simulations. The space needed to
store these lists and the time to scan them can be reduced, to some
extent, by retaining only inequivalent rules.

Further efforts in the future could lead to obtain the list of inequivalent
families of SCs for n = 7, probably requiring a theoretical study of the
different classes Ck. Alternatively, other approaches to subdividing the set of
all families of SCs could be of practical and theoretical interest.
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Appendix A. Separability

Let f be a positive BF. We establish the following equivalence: for some
k ∈ N ,

1. f is separable by a monotone nondecreasing (pseudo-Boolean) polyno-
mial p of degree k, in the sense that f(x) = 1 iff p(x) ≥ 0;

2. f is separable by a k-additive capacity µ and a threshold λ, in the sense
that, for x = 1A, f(x) = 1 iff µ(A) ≥ λ.

Assume the latter. We have µ(A) =
∑

B⊆A;|B|≤km(B). The k-additive capac-
ity µ corresponds to the monotone pseudo-Boolean polynomial p(x) of degree
k defined by p(x) =

∑
B⊆N ;|B|≤km(B)

∏
i∈B xi. For x = 1A, p(x) = µ(A) and

we have µ(A) ≥ λ iff p(x) ≥ λ. It is easy to modify the polynomial p into
another polynomial p′ in order to have p(x) ≥ λ iff p′(x) ≥ 0. To do this,
we translate p by adding −λ. Actually, we change the value m(∅) = 0 into
m′(∅) = −λ. The obtained polynomial p′ is also monotone nondecreasing.

Starting from the hypothesis that f(x) = 1 iff p(x) ≥ 0, with p a mono-
tone non decreasing polynomial of degree k, we add λ = −p(0), the value of
the characteristic function of the emptyset, to both sides of the latter inequal-
ity, getting p(x)−p(0) ≥ λ. The righthand side is a monotone non-decreasing
pseudo-Boolean function which vanishes on the null vector. The set function
µ defined by µ(A) = p(1A)−p(0) is a capacity. Since p(x)−p(0) has a repre-
sentation as a multilinear polynomial of degree k, the corresponding capacity
is k-additive.

Note that the trivial cases in which all coalitions are sufficient or none
of them is are separable by a polynomial of degree 0 (i.e., a constant) or a
0-additive capacity (i.e., the null constant).

Appendix B. List of inequivalent families of MSCs for n = 4

The families are grouped by type. There are 25 possible types, 29 in-
equivalent families of MSCs (plus the trivial case in which all coalitions are
sufficient) and 167 families of MSCs (plus the same trivial case). Each in-
equivalent family in the list is associated the size of its equivalence class.
All inequivalent families, except three of them, can be represented by a 1-
additive capacity. The three other families can be represented by a 2-additive
capacity. They are marked in the last column by C2.
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Type Family of MSCs # eq. Ck
(0,0,0,0) {} 1
(0,0,0,1) {1234} 1
(0,0,1,0) {124} 4
(0,0,2,0) {234, 124} 6
(0,0,3,0) {134, 123, 124} 4
(0,0,4,0) {134, 123, 234, 124} 1
(0,1,0,0) {24} 6
(0,1,1,0) {14, 123} 12
(0,1,2,0) {24, 134, 123} 6
(0,2,0,0) {12, 23} 12

{23, 14} 3 C2
(0,2,1,0) {24, 134, 23} 12
(0,3,0,0) {13, 12, 34} 12 C2

{24, 12, 14} 4
{24, 34, 14} 4

(0,3,1,0) {13, 34, 23, 124} 4
(0,4,0,0) {24, 12, 13, 34} 3 C2

{24, 12, 14, 23} 12
(0,5,0,0) {24, 12, 14, 13, 34} 6
(0,6,0,0) {24, 12, 14, 34, 23, 13} 1
(1,0,0,0) {1} 4
(1,0,1,0) {234, 1} 4
(1,1,0,0) {14, 2} 12
(1,2,0,0) {13, 34, 2} 12
(1,3,0,0) {24, 34, 23, 1} 4
(2,0,0,0) {4, 3} 6
(2,1,0,0) {4, 23, 1} 6
(3,0,0,0) {4, 2, 1} 4
(4,0,0,0) {4, 2, 3, 1} 1
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Appendix C. List of inequivalent families of MSCs of class C2 for
n = 5

We list below the 91 inequivalent families of MSCs that cannot be rep-
resented by a 1-additive capacity. They can all be represented using a 2-
additive capacity. The families are grouped by type. Each inequivalent
family in the list is associated the size of its equivalence class.

Type Family of MSCs # eq.
(0,0,2,0,0) {135, 234} 15
(0,0,2,1,0) {234, 125, 1345} 15
(0,0,3,0,0) {145, 123, 345} 30

{235, 234, 125} 60
(0,0,3,1,0) {134, 135, 2345, 124} 60
(0,0,4,0,0) {145, 234, 345, 124} 15

{135, 245, 234, 125} 60
{235, 145, 135, 123} 60
{134, 345, 234, 125} 10

(0,0,4,1,0) {245, 123, 234, 125, 1345} 15
(0,0,5,0,0) {235, 134, 135, 345, 125} 60

{235, 134, 135, 245, 124} 12
{235, 145, 134, 245, 124} 60
{145, 134, 123, 234, 125} 60

(0,0,6,0,0) {135, 235, 234, 125, 145, 123} 15
{135, 345, 234, 125, 245, 123} 10
{345, 235, 234, 125, 124, 134} 60
{135, 345, 235, 125, 124, 145} 60

(0,0,7,0,0) {345, 234, 125, 145, 134, 245, 123} 30
{135, 235, 125, 124, 145, 134, 245} 60

(0,0,8,0,0) {135, 345, 234, 125, 124, 145, 245, 123} 15
(0,1,1,0,0) {123, 45} 10
(0,1,2,0,0) {15, 123, 345} 60

{12, 134, 345} 60
(0,1,3,0,0) {235, 14, 123, 125} 60

{13, 235, 145, 124} 60
{235, 14, 123, 245} 60
{24, 134, 135, 123} 30
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Type Family of MSCs # eq.
(0,1,4,0,0) {235, 15, 245, 123, 234} 120

{135, 123, 25, 345, 124} 60
{235, 34, 145, 125, 124} 60
{24, 235, 135, 123, 125} 20

(0,1,5,0,0) {345, 235, 15, 234, 134, 123} 30
{235, 125, 124, 145, 34, 123} 60
{24, 135, 345, 235, 125, 123} 60

(0,1,6,0,0) {24, 135, 345, 235, 145, 134, 123} 60
(0,2,0,0,0) {34, 15} 15
(0,2,1,0,0) {12, 35, 234} 60

{145, 23, 25} 60
(0,2,2,0,0) {24, 13, 125, 345} 30

{24, 12, 135, 345} 30
{134, 23, 35, 124} 60
{13, 12, 245, 234} 120
{12, 245, 35, 234} 60

(0,2,3,0,0) {15, 23, 134, 345, 124} 60
{45, 134, 135, 234, 25} 120
{135, 123, 45, 125, 14} 60
{24, 235, 14, 345, 135} 30
{24, 34, 135, 123, 125} 60

(0,2,4,0,0) {135, 235, 14, 234, 123, 45} 60
{14, 35, 234, 125, 245, 123} 15
{24, 135, 235, 125, 34, 123} 30

(0,3,0,0,0) {12, 14, 45} 60
{12, 34, 45} 30

(0,3,1,0,0) {24, 145, 23, 25} 60
{34, 14, 35, 125} 60
{34, 245, 23, 14} 120
{34, 14, 123, 25} 60

(0,3,2,0,0) {15, 14, 123, 25, 345} 60
{24, 12, 134, 35, 145} 30
{13, 23, 245, 125, 14} 120
{15, 45, 123, 234, 25} 60

(0,3,3,0,0) {24, 135, 145, 134, 23, 25} 20
{12, 35, 234, 145, 13, 245} 60
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Type Family of MSCs # eq.
(0,4,0,0,0) {34, 15, 14, 35} 15

{24, 15, 23, 25} 60
{24, 34, 15, 23} 10
{24, 34, 15, 35} 60

(0,4,1,0,0) {13, 34, 35, 25, 145} 60
{24, 13, 15, 25, 345} 60
{13, 15, 23, 25, 345} 30
{34, 14, 45, 125, 23} 60

(0,4,2,0,0) {24, 12, 35, 145, 134, 23} 60
{24, 35, 145, 34, 25, 123} 15

(0,5,0,0,0) {24, 13, 15, 23, 14} 60
{24, 12, 15, 35, 25} 60
{24, 12, 15, 35, 34} 12
{12, 15, 34, 25, 45} 60

(0,5,1,0,0) {135, 12, 14, 34, 23, 25} 60
{15, 35, 124, 23, 13, 45} 60

(0,6,0,0,0) {24, 12, 23, 25, 13, 45} 15
{24, 12, 35, 34, 25, 13} 10
{24, 12, 34, 23, 13, 45} 60
{15, 14, 34, 23, 25, 45} 60

(0,6,1,0,0) {24, 12, 35, 145, 34, 25, 13} 10
(0,7,0,0,0) {12, 14, 34, 23, 25, 13, 45} 30

{24, 12, 15, 14, 35, 34, 45} 60
(0,8,0,0,0) {24, 12, 15, 34, 23, 25, 13, 45} 15
(1,2,0,0,0) {34, 15, 2} 15
(1,3,0,0,0) {24, 15, 3, 25} 60
(1,4,0,0,0) {13, 2, 14, 35, 45} 15
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