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Abstract We consider the problem of learning a function assigning objects
into ordered categories. The objects are described by a vector of attribute
values and the assignment function is monotone w.r.t. the attribute values
(monotone sorting problem). Our approach is based on a model used in Multi-
Criteria Decision Analysis (MCDA), called MR-Sort. This model determines
the assigned class on the basis of a majority rule and an artificial object that
is a typical lower profile of the category. MR-Sort is a simplified variant of the
ELECTRE TRI method. We describe an algorithm designed for learning such
a model on the basis of assignment examples. We compare its performance
with Choquistic Regression, a method recently proposed in the preference
learning community, and with UTADIS, another MCDA method leaning on
an additive value function (utility) model. Our experimentation shows that
MR-Sort competes with the other two methods, and leads to a model that is
interpretable.
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1 Introduction

Sorting problems frequently arise in real life contexts. For instance, a com-
mittee is assigned the task of separating good projects from bad ones, a jury
has to assign grades to students. To select the category in which an alterna-
tive (e.g. a project, a student) should be assigned, a common and intuitive
approach consists in analyzing its characteristics recorded as the value of at-
tributes, also called criteria (e.g., for grading a student, the marks obtained
in the different subjects). In both examples above, categories are specified
before sorting takes place and they are ordered to reflect the preference of the
decision maker. Furthermore, the grading of students typically is monotone
w.r.t. the marks obtained. Better marks cannot lead to a worse grade.

These two properties, i.e. sorting in ordered classes by rules that are mono-
tone w.r.t. attributes values, characterize the kind of sorting problems we want
to address with the algorithm presented in this paper. Formally, each alter-
native @ in a set A is described as a vector (aq,...,a; ,...,ay,), where a; is
the value of a on the jth attribute. This value is an element of the attribute’s
scale X, endowed with a preference order 77;. The set of alternatives A may
thus be seen as a subset of the Cartesian product X = H?Zl X;. Sorting
the alternatives in the ordered categories Cp, > ... = C; (where > describes
the Decision Maker’s preference order on the categories) amounts to define a
function g : A C X — {C4,...,Cp}. The sorting function g is monotone if an
alternative a cannot be assigned to a less preferred category than an alterna-
tive b whenever a is at least as good as b on all attributes. Precisely, for all
a,b e A, with a; 7Z; b; for all j, we have g(a) > g(b) or g(a) = g(b).

In the Preference Learning community, learning such monotone assign-
ment functions on the basis of assignment examples is referred to as monotone
learning (Tehrani et al, 2012).

In the Multiple Criteria Decision Analysis (MCDA) community, sorting
alternatives into categories on the basis of their evaluation on a family of
criteria is one of the central problems (Figueira et al, [2013). In contrast with
Machine Learning usage, MCDA puts the emphasis on interaction with the
Decision Maker (DM). Their preferences are usually elicited in the course of
an interactive process and explicitly incorporated in the sorting model. There
are two main categories of MCDA models that have been used for sorting
purposes:

1. Methods based on the construction of an overall score or value function
aggregating all attributes. The weighted sum and the additive value func-
tion models (Belton and Stewart], 2002, Chapter 6) belong to this category.
Basically, an alternative is assigned to a category whenever its score (or
value) reaches some lower threshold value and is smaller than the lower
threshold of the category just above.

2. Methods based on outranking relations. They are inspired by social choice
theory and rely on pairwise comparisons of alternatives. Well-known in this
family are the ELECTRE methods and, in particular, ELECTRE Tri. In
this framework, an alternative is assigned to a category if it is preferred to
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the lower profile of the category but is not preferred to the lower profile of
the category just above. The preference (called outranking) of an alterna-
tive over another is determined by means of a concordance-nondiscordance
rule. Such a rule checks whether the former is at least as good as the latter
on a sufficiently strong coalition of criteria and whether there is no criteria
on which the former alternative is unacceptably worse than the latter.

For a detailed presentation of such methods, the reader is referred to|Doumpos
and Zopounidis (2002)); |[Zopounidis and Doumpos| (2002]).

Eliciting the parameters of a model in MCDA can either be done directly
or indirectly. Since MCDA favors interactions with the decision maker, the pa-
rameters are often elicited through directly asking the decision maker questions
that determine or restrict the range of variation of the model’s parameters.
Questioning procedures are often cognitively demanding while decision mak-
ers are usually very busy. Therefore, indirect methods have been developed
based on a learning set consisting, for instance, of assignment examples, in the
case of a sorting problem. Several learning algorithms were proposed in the
MCDA literature, in particular based on Linear Programming. It is the case
of the UTADIS method developed by [Jacquet-Lagreze and Siskos| (1982)) (see
also |Doumpos and Zopounidis| 2002, Chap.4).

However, in MCDA, learning sets are usually of small size and therefore,
the learning algorithms developed within this field are not specially designed
to handle large data sets. Hence, models’ parameters are typically under-
determined.

The aim of this paper is to present and test an algorithm designed to learn
the parameters of an MCDA sorting model, called MR-Sort, which is based
on an outranking relation. This algorithm is able to deal with large learning
sets. We compare its performance with that of other algorithms developed
within the Machine Learning community as well as with that of the UTADIS
sorting method. Whenever possible, we also confront the results provided by
our heuristic with the optimal solution obtained by solving a mixed integer
formulation of the problem. For large instances, however, the latter is not
feasible in reasonable computing times. The main advantage of using MCDA
models, as compared with machine learning algorithms, is that the former
allow for an interpretation of the explicit rules used for sorting the objects.

The paper is structured as follows. After a brief literature review in Section
we describe the MR-Sort model and its specificities in Section [3] Section
describes the algorithm elaborated to learn the parameters of this model. We
provide here a complete description of this algorithm, which was previously
more briefly presented in |[Sobrie et al (2013). In the interval, some changes
have been brought to the algorithm in view of enhancing its efficiency, which
allows to apply it to larger datasets and benchmarks used in machine learning.
In Section[5] the results obtained by testing the algorithm on real data sets are
presented and its performance is compared with other MCDA and machine
learning algorithms, both for binary and multiclass sorting. Finally, in Section
[l we conclude and outline some perspectives for further developments.
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2 Literature review

Model-based preference learning consists in using models making assumptions
about the structure of preference relations (Furnkranz and Hullermeier| [2010)).
In this section, we emphasize the link between the multiple criteria decision
analysis (MCDA) and preference learning (PL) domains (see also (Sobrie,
2016)).

2.1 Multiple Criteria Decision Analysis and Preference Learning

MCDA models are designed to provide support to a Decision Maker (DM)
facing a decision problem. Once their parameters have been elicited, models
lead to a recommendation and allow to explain it to the DM. Usually, prob-
lems treated in MCDA only involve a small number of alternatives and the
parameters of the model are determined by interacting with one or several
DMs.

The involvement of a DM in the building of a preference model is a char-
acteristic of MCDA. This feature makes it come close to active learning tech-
niques in PL.

For several reasons, determining the value of the model’s parameters by
questioning the DM can prove difficult. Therefore several algorithms were
proposed to learn such parameters from holistic preference statements or as-
signment examples (e.g. [Jacquet-Lagreze and Siskos| (1982)); Mousseau and
Stowinski (1998)); |Jacquet-Lagreze and Siskos|(2001));|Bous et al| (2010));|Doumpos
et al| (2014)). These algorithms are often based on linear programming or MIP.
The latter can only deal with relatively small data sets in which alternatives
are described on few criteria or attributes (e.g. [Leroy et al| (2011))).

Usually, PL focusses on the learning and predictive performance of algo-
rithms. It does not emphasize the interpretability of the results. Algorithms
used to predict assignments, rankings, etc. are used as black-boxes. Contrary
to MCDA, problems dealt with in this subfield of Machine Learning generally
involve large data sets and many attributes.

Using MCDA models in the context of machine learning is especially advis-
able in the case of monotone PL, i.e. in case the position of an object in a rank-
ing or its assignment to a category cannot become worse when the attributes
that are relevant for its description take on better values (which implies that a
“natural” order is defined on the values of the attributes). Monotonicity of the
preference w.r.t. the values of the attributes (called criteria) is a fundamental
property of most MCDA problems.

The use and perspectives of MCDA models in Machine Learning was dis-
cussed by [Corrente et al (2013). These authors emphasize in particular the
usage of Robust Ordinal Regression (ROR) in ranking problems.

In this paper, we focus on the sorting problem statement in which input
attributes and classes are monotone. In machine learning, monotone classi-
fication has been introduced by Ben-David et all (1989)). Since then, several



Learning monotone preferences using a majority rule sorting model 5

papers were published in the field of PL to deal with the sorting problem
statement. Ben-David (1995) proposes a learning method based on decision
trees. In (1998)), neural networks are used in the context of monotone
classification. |Chandrasekaran et al (2005) develop an algorithm based on
the so-called isotonic separation. In Dembczynski et all (2006) a method us-
ing additive value functions, similar to UTADIS (Jacquet-Lagreze and Siskos|
[1982), is studied. [Dembczyniski et all (2009) propose an algorithm based on
the dominance rough set approach. Recently, [Tehrani et al (2012) developed
an algorithm that allows to learn the parameters of a Choquet integral, which
is used for sorting the items.

In MCDA, several sorting procedures exist. |[Zopounidis and Doumpos|
provide an overview of sorting methods in MCDA. Some of them, like
UTADIS (Jacquet-Lagreze and Siskos| [1982) and the dominance-based rough
set approach (Greco et al, 2001), are designed to learn the preferences of the
decision maker on the basis of assignment examples, but their performance
has not been tested extensively on large size benchmark data sets.

2.2 Learning an ELECTRE TRI model

To our knowledge, none of the sorting algorithms proposed up to now in the
machine learning field are based on ELECTRE models. In MCDA, multi-
ple papers are devoted to learn the parameters of ELECTRE TRI models.
[Mousseau and Stowinski| (1998)) propose a linear program aiming to learn all
the parameters of an ELECTRE TRI model. Mousseau et all (2001)) consider
the problem of finding the weights and the majority threshold of an ELECTRE
TRI model for which delimiting profiles are known beforehand. They propose
a linear program on which they conduct some experiments. In |Ngo The and
[Mousseau| (2002), a Mixed Integer Program (MIP) is suggested to learn the
profiles of an ELECTRE TRI model for which the weights and the majority
threshold are known beforehand. Other linear and MIP programs allowing
to learn the vetoes of an ELECTRE TRI model are presented in
2002)

In Doumpos et al (2009), a genetic algorithm is set up to learn the parame-
ters of an ELECTRE TRI model. It can be transposed to learn the parameters
of an MR-Sort model. However this metaheuristic is not especially designed to
adapt to the structure of the problem: its crossover and mutation operators are
standard ones. In operational research, it is well-known that a metaheuristic
adapted to the problem structure performs better .

Learning the parameters of an MR-Sort model has been already studied
in [Leroy et al (2011). The paper describes a mixed integer program (MIP)
allowing to learn the parameters of an MR-Sort model on the basis of assign-
ment examples. [Cailloux et al| (2012) describe three MIPs aiming to learn the
parameters of an MR-Sort model in the context of multiple decision makers.
These programs require even more binary variables than the MIP developed in
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(Leroy et al, 2011). It is worthless to consider using one of these programs in
the context of preference learning problems where large data sets are involved.

3 MR-Sort, an ordered classification method

MR-Sort is a method for assigning objects to ordered categories. Each object
is described by a vector of attribute values. The attribute values can be
meaningfully ordered, i.e. there is an underlying order on each attribute scale,
which is interpreted as a “better than” relation. Categories are determined by
limit profiles, which are vectors of attribute values. The lower limit profile of
a category is the upper limit profile of the category below. The MR-Sort rule
works as follows. An object is assigned to a category if it is better than the
lower limit profile of the category on a sufficiently large coalition of (weighted)
criteria and this condition is not met with respect to the upper limit profile
of this category. Obviously, MR-Sort is a monotone rule, i.e. an object that
is at least as good as another on all attributes cannot be assigned to a lower
category.

The MR-Sort rule is a simplified version of the ELECTRE TRI procedure,
a method that is used in MCDA to assign alternatives to predefined categories
(Yu, [1992; Roy and Bouyssoul, [1993). The underlying semantic is generally to
assign the alternatives labels such as “good”, “average”, “bad”,....

To be more formal, let X be a set of objects evaluated on n ordered at-
tributes (or criteria). We assume that X is the Cartesian product of the
attributes ranges, X = X; x Xa x ... x X, = [[]_; X;. An object a in X is
thus a vector (a1,...,a;,...,a,), where a; € X; for all j.

The categories which the objects are assigned to by the MR-Sort model
are denoted by C}, with h = 1,...,p. The category C}, is delimited by its
lower limit profile b,_1 and its upper limit profile by, which is also the lower
limit profile of category Cp41 (provided h < p). The profile by, is the vector of
attribute values (bn1,...,bnj,...,bnn), With b, ; € X; for all j.

By convention, the best category, C,,, is delimited by a fictive upper profile,
by, and the worst one, C, by a fictive lower profile, by.

It is assumed that the profiles dominate one another, i.e.:

bhflngbhyj, h:].,...,p; j:].,...,n.

Figure [1| provides a graphical representation of the profiles and categories of
an MR-Sort model.

Using the MR-Sort procedure (without veto), an object is assigned to a
category if its attribute values are at least as good as the category lower profile
values on a weighted majority of criteria and this condition is not fulfilled when
the object’s attribute values are compared to the category upper profile values.
In the former case, we say that the object is preferred to the profile, while,
in the latter, it is not. Formally, if an object a € X is preferred to a profile
by, we denote this by a = b,. Object a is preferred to profile b, whenever the
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Fig. 1 Profiles and categories of an MR-Sort model (5 criteria, 3 categories)

following condition is fulfilled:

azbye Y wp> A (1)

Jia; >bp,j

where w; is the nonnegative weight associated with attribute j, for all j
and A sets a majority level. The weights satisfy the normalization condition
> jer Wi = 1; As called the majority threshold; it satisfies A € [1/2,1]. The
sum Zj:ajzbh,j wj is often called the concordance index and will be denoted
by o(a,by). It measures the strength of the coalition of criteria backing the
hypothesis that a is at least as good as the profile b,. The threshold A tells
which coalitions are strong enough to conclude that indeed a is at least as
good as by,.

The preference relation - defined by is called an outranking relation
without veto or a concordance relation (Roy and Bouyssou (1993); see also
Bouyssou and Pirlot| (2005], 2007, 2015 for an axiomatic description of such
relations).

Consequently, the condition for an object a € X to be assigned to category
C, writes:

Z w; > A and Z w; < A (2)

Jiaj >bp—1,; Jjia; >bp j

The MR-Sort assignment rule described above involves pn + 1 parameters,
i.e. n weights, (p — 1)n profiles evaluations and one majority threshold. Note
that the profiles by and b, are conventionally defined as follows: by ; is a value
such that a; > by ; for alla € X and j = 1,...,n; by ; is a value such that
a; <bpjforallac Xandj=1,...,n.

A learning set A is a subset of objects A C X for which an assignment is
known. For h = 1,...,p, A, denotes the subset of objects a € A which are
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assigned to category Cp,. The subsets Aj are disjoint; some of them may be
empty.

Remark. The MR-Sort rule described above is a slightly particularized ver-
sion of the non-compensatory sorting model studied by [Bouyssou and Marchant
(2007allb). With respect to these methods, MR~Sort has the following features:
(i) no veto is considered and (ii) the coalitions of criteria that are sufficiently
largeﬂ and imply that determining whether an object is preferred to a profile
can be done by associating weights to the attributes and selecting a majority
threshold through formula .

4 Learning the parameters of an MR-Sort model

We briefly introduce the method proposed in |Leroy et all (2011) to learn the
parameters of an MR-Sort model by solving a mixed integer program (MIP).
We recall the limitations of such an approach in terms of computing time
and memory space resources. We then describe the metaheuristic we have
developed to achieve the same goal.

4.1 Mixed Integer Programming formulation

In Leroy et al (2011, a linear program involving binary variables was used to
learn the parameters of an MR-Sort model (without veto). The program tries
to minimize the 0/1 loss, i.e. it searches for a model that is compatible with
as many examples as possible.

Learning the parameters of an MR-Sort model using linear programming
cannot avoid using binary variables. The MIP proposed by [Leroy et al (2011)
involves m - (2n + 1) binary variables, where m is the size of the learning set
and n, the number of attributes.

The experimental results showed that learning the parameters of a model
for data sets involving a large number of assignment examples, criteria or cat-
egories, requires huge computing times (using the IBM ILOG CPLEX solver).
With barely 100 alternatives, 5 criteria and 3 categories (i.e. 1100 binary vari-
ables in the MIP), more than 100 seconds are needed to learn the parameters
of an MR-Sort modeldl

Due to these long computing times, using this MIP is not a feasible ap-
proach for the type of problem we want to handle, i.e. problems involving large
data sets. An option to overcome the computing time issue is to use relax-
ation techniques that allow to obtain an approximate solution (Minoux] (2008));

I In a general non-compensatory sorting method, the class of sufficient coalitions cannot
always be described by an additive measure; it may require the use of a capacity. Refer to
Bouyssou and Marchant| (2007a) for more detail.

2 System used: Core 2 Duo P8700, running Gentoo Linux and CPLEX 12.5
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Wolsey| (1998))). Instead of exploring this path (which certainly deserves at-
tention) we developed a new sophisticated — population based — metaheuristic
which exploits as much as possible the specificities of the problem. This algo-
rithm is described in the next section.

4.2 The metaheuristic

In section [2] we gave an overview of several algorithms that were proposed
to learn the parameters of ELECTRE TRI and MR-Sort models. In [Sobrie
et al (2013]), we described a preliminary version of a metaheuristic for learning
MR-Sort models. This version needed improvements from an efficiency point
of view in order to tackle large datasets, and was only validated on artificial
data.

The present metaheuristic is grounded on the following two important ob-
servations:

— Given a set of profiles, learning the weights and the majority threshold
of an MR-Sort model can easily be achieved by solving a linear program
without binary variables.

— In contrast, given a set of weights and a majority threshold, learning the
profiles values by means of linear programming requires using binary (0/1)
variables.

To properly take the structure of the problem into account, i.e. the ease of
learning the weights and the majority threshold with a linear program and the
difficulty to do the same for the profiles, we separate the algorithm in three
components:

1. A heuristic which initializes a set of profiles;

2. A linear program learning the weights and the majority threshold of the
model on the basis of fixed profiles;

3. An heuristic adjusting the profiles to improve the quality of the model,
while keeping the weights and majority threshold fixed.

The objective of the algorithm is to find a model restoring as many exam-
ples as possible. To assess the quality of the models, we use two indicators.
The first is the classification accuracy (CA) criterion, which is defined as fol-

lows:
Number of assignment examples restored

CA = (3)

Total number of assignment examples

The higher the value of the classification accuracy, the better the quality of the
model. The second indicator is the Area Under Curve (AUC), which quantifies
the discriminating power of the algorithm to separate alternatives in different
classes. Obviously, by optimizing successively the weights and threshold, then
the profiles, again the weights and threshold and so on, instead of optimizing
all parameters simultaneously, there is no guarantee that a very good solution
will be reached, even though the process is iterated. In order to enhance the
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chances to converge towards a very good solution, we adopt an evolutionary
approach evolving a population of N,,,q MR-Sort models.

The general architecture of our algorithm is described as Algorithm [I} The
latter shows how the three components are combined to find a MR-Sort model
that restores as well as possible the assignment examples in the learning set.

Algorithm 1 Metaheuristic to learn all the parameters of an MR~Sort model

Generate a population of N,,,q models with profiles set by an initializing heuristic
repeat
for all model M of the set do
Learn the weights and majority threshold with a linear program, using the current
profiles
Adjust the profiles with a heuristic, using the current weights and threshold; repeat
Nit times.
end for
Reinitialize the {Ng“’dJ models giving the bottom values of AUC

until Stopping criterion is met

First a population of N,,,q is generated and, for each model, the set of
profiles are initialized by a specific heuristic. After the initialization phase,
for each model M, the algorithm solves a linear program to find the weights
and the majority threshold with fixed profiles (obtained in the initialization
step). Then, for each model M, on the basis of the weights and majority
threshold learned in the previous step, the metaheuristic adjusts the profiles
with a randomized heuristic in order to maximize the number of examples
compatible with the model. The randomized heuristic alters the profiles N;;
times for each model M, after which the set of profiles restoring the largest
number of assignment examples is selected. This process results in a new
population of N,,,q models. These are ordered by decreasing order of the
AUC criterion. The top half of the models are retained while the bottom half
(precisely L%J models) are reset using the initializing heuristic.

The algorithm stops either after having run a given number of times, de-
noted by N, (fixed a priori), or when it has found at least one model that
restores correctly all the assignment examples. If no model restores correctly
all the assignment examples, the model giving the best AUC is returned.

In the next subsections, we detail the three components of the algorithm.

4.2.1 Profiles initialization

The first step of the algorithm consists in the initialization of a set of profiles for
each of the N,,,q models in the population. The general idea of the heuristic
designed to set the value by, ; of the profile b;, on criterion j is the following.
This value is chosen in order to maximize the discriminating power of each
criterion, relatively to the alternatives in the learning set A. More precisely,
we set by ; in such a way that alternatives ranked in the category above by,
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(i.e. Ch41) typically have an evaluation greater than by ; on criterion j and
those ranked in the category below b, (i.e. C}) typically have an evaluation
smaller than by, ;.

In setting the initial profile values, we pay attention to the following as-
pects. Firstly, for guaranteeing an equal treatment to all profiles, we chose
to consider only C} and C}j41 for determining by,. The reason for this option
is to balance the number of categories above and below the profile that are
taken into account for determining this profile. For profiles b; and b,_1, the
only way of satisfying this requirement is to consider only one category above
and one category below the profile.

The second issue is relative to the way the different categories are repre-
sented in the learning set. Consider the subsets Ay and Ap 1 of alternatives in
the learning set A that are assigned, respectively, to categories C}, and Cp 4.
These subsets may be of quite different sizes. We weight the alternatives by
using the relative frequencies of Ay, and Ay +1 in order to control the influence
of categories that are under- or over-represented in the learning set.

The initializing heuristic is implemented as follows:

1. For each category C}y, compute the frequency 7, with which alternatives
in the learning set are assigned to category Ch, i.e., mp = ||’i‘4h‘|.

2. For each criterion and each profile by, a set of candidate profile values are
selected. They correspond to the performances of alternatives in A as-
signed to categories C}, and Cj4;. The value of the profile, by, j, is chosen
randomly among the candidate values with some probability. The prob-
ability of each candidate value is proportional to its likelihood to classify
correctly alternatives of categories C}, and C},41 on the basis of their per-
formance on the sole criterion j. In view of balancing the influence of Ap
and Apy1, which may be of quite different sizes, the examples are assigned
a weight that is inversely proportional to the size of the class they belong
to.

3. The profiles are computed in descending order, enforcing the constraint
that profiles values on each criterion are ordered, i.e., we have by ; > by, 5,
for all criterion j and profile h.

4.2.2 Learning the weights and the majority threshold

Assuming that the profiles are given, learning the weights and the majority
threshold of a MR-~Sort model from assignment examples is done by means
of solving a linear program. The MR-Sort model postulates that the profiles
dominate each other, i.e. bp11,; > by ; for all A and j, and the inequality is
strict for at least one j. The constraints derived from the assignments of the
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alternatives in the learning set are expressed as follows:

Zj:ajzbh,l,j W — T+ T = A Ya € Ap,h=2,...p—1
Zj:aij}L,jwjﬁ‘ya_ :1:)\—5 Ya € Ap,h=1,...,p—2
Z?:ij =1
wj € [0;1] i=1,...,n
A €10.5;1]
Tay Yo, Th, Yl € RY a € A.

The small positive number ¢ is used for transforming strict inequalities into non
strict ones. There are as many 4-tuples of variables x4, y,, 2/, y,, as there are
alternatives in the learning set A. The value of z,—x/, (resp. y,—y,) represents
the difference between the sum of the weights of the criteria belonging to the
coalition in favor of @ € Aj, w.r.t. by_1 (resp. by) and the majority threshold.
If both @, — 2!, and y, —y/, are positive, then the alternative a is assigned to the
right category. In order to try to maximize the number of examples correctly
assigned by the model, the objective function of the linear program minimizes
the sum of 7, and yj,, i.e. the objective function is min}_ . 4 (@, +v,). Note
however that such an objective function does not guarantee that the maximal
number of examples are correctly assigned. Failing to meet this goal may be
due to possible compensatory effects between constraints, i.e., the program
may favor a solution involving many small positive values of a/, and y/, over
a solution involving large positive values of a few of these variables. Such a
compensatory behavior could be avoided, but at the cost of introducing binary
variables indicating each violation of the assignment constraints. We do not
consider such formulations in order to keep computing times within reasonable
limits.

4.2.83 Learning the profiles

Learning the profiles by using a mathematical programming formulation re-
quires binary variables (Ngo The and Mousseau, 2002), leading to a Mixed
Integer Program (MIP). In order to deal with problems involving large learn-
ing sets (e.g. 300 assignment examples, 10 criteria and 5 categories), MIP is
not an option, as discussed in Section Therefore we opt for a randomized
heuristic algorithm which is described below.

For illustrative purposes, consider a model involving 3 categories and 5
criteria. Figure[2represents the profiles and criteria as well as four alternatives
respectively denoted as a*,a”, a® and a°. Criteria weights have been set equal
(w; = 0.2 for j =1,...,5) and the majority threshold A is set to 80%. Hence,
an alternative is considered superior to a profile if it is at least as good as the
profile on either four or five criteria.

Assume that the first three alternatives are misclassified by this model.
The first alternative, a*, is assigned to category C7 by the DM and to Cy by
the model. The second one, a”, is assigned to category Cs by the DM and to
C1 by the model and the third one, a°, is assigned to category Cy by the DM
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and to C3 by the model. Assuming fixed weights and majority threshold, this
means that the profiles delimiting the categories, are set either too high or
too low on one or several criteria. Assume also that alternative a® is correctly
assigned to category C7 both by the DM and the model.

w1 = 0.2
we = 0.2
wsz = 0.2
wyq = 0.2
ws = 0.2

A=0.8

crit. 1 crit. 2 crit. 3 crit. 4 crit. 5

Fig. 2 Alternatives wrongly assigned because of profiles set too low or too high

The idea implemented in the algorithm is to move up or down the profile
value on some criterion in order to improve classification accuracy. We evaluate
all possible moves of the profile on each attribute and select one likely to
improve classification accuracy.

To be more precise, let us define several subsets of alternatives for each
criterion j and each profile i and any positive value §, which represents the
size of a move:

Vhff (resp. Vh_j) : the sets of alternatives misclassified in C} 41 instead of C,
(resp. Cj, instead of Cp1), for which moving the profile b, by +4 (resp.
—d) on j results in a correct assignment. For instance, a” belongs to the
set V5 on criterion 2 for § > 63 .

W,j ? (resp. W~ f) : the sets of alternatives misclassified in Cj41 instead of
Ch, (resp. C}, instead of Chy1), for which moving the profile b, by +¢
(resp. —d) on j strengthens the criteria coalition in favor of the correct
classification but will not by itself result in a correct assignment. For
instance, a* belongs to the set W1+ 9 on criterion 1 for § > §¢".

QZ"; (resp. Q;";) : the sets of alternatives correctly classified in Cy11 (resp.
C},) for which moving the profile b, by +0 (resp. —d) on j results in a
misclassification. For instance, a® belongs to the set Ql_g on criterion 5 for
5> 08

R;;‘; (resp. R,z‘;) : the sets of alternatives misclassified in C}, instead of Cp41
(resp. Ch41 instead of C},), for which moving the profile by, by 44 (resp.
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—0) on j still strengthens the criteria coalition in favor of the incorrect
classification. For instance, a” belongs to the set Rfi on criterion 4 for
5> 0%

T+‘5 (resp. T, J) the sets of alternatives assigned by the model to Cj41 or
hlgher (resp C), or lower) but classified by the DM in a category below
C), (resp. to a category above Cj,41), for which moving the profile by +¢
(resp. —d) on j strengthens the criteria coalition in favor of a classification
that comes closer to the correct one. For instance a® belongs to the set
T;fg on criterion 3 for § > 6§ .

In the above, subsets of type V and W contain alternatives that will tend to
be better classified if we perform a given profile move. On the contrary, the
assignment of alternatives in subsets of type @ will be worsened by the move;
the (wrong) classification of alternatives in subsets of type R and T will not
be altered by the move, but the latter goes “in the wrong direction” w.r.t. a
correct classification of these alternatives. In order to formally define these
sets we introduce the following notation. Alh denotes the subset of misclassified
alternatives that are assigned to category C; by the model while the DM assigns
them to category Cj,. A>l denotes the subset of misclassified alternatives
that are assigned to a category above Cj by the model while the DM assigns
them to a category below C}. And conversely for A> y- Finally, o(a,by) =
Zj:ajzbh,,j w;. We have, for any h, j and positive §:

Vi ={a € A} i by + 6> a; > by and o(a, by) —w; < A}
V’fg = {a € AZH tbp; — 0 <a; <bp,; and o(a,by) +w; > )\}
ijrf ={ac APt b+ 0> aj > by and o(a,by)
(a,b

(a,b

)

—ij)\}
Wh_j:{aeAZH:bh7j—6<aj<bh,j and o(a,by) +w; < A}
;,(;:{QGAZE1bh7j+5>%‘2bh,j and o(a, h)—wj<)\}

Q;‘s. = {a € AZ tbpj — 0 < aj <bp;and o(a,bp) +w; > )\}
5
RfS ={a€ Al i :bhj+6>a;>bn;}
g ={a€ AR by — 8 <aj <bu}
T;fj —{(l S AzZ : bh’j +6 > a; > bh’j}
T}:(S = {a S A;Zi} : bhﬂ‘ -0 < a; < bh)j}

The choice of a profile move is performed as follows. First, to avoid vi-
olations of the dominance rule between the profiles, the value of 4+ or —¢
is restricted to vary in the interval [bj_1 j,bp41,;]. We then compute a de-
sirability index P(bJr ) for each possible value +d of a move of profile b ;.
This index balances the alternatives that will be better off after the move and

these on which the move will have a negative impact. The index is computed
according to the following formula:

ol

Pb}0) = kv [ViE |+ kw (W |k | T, |+ ko Q) |+ kR | R

h,j
i) = 5
h.g dv |V, [rdw W S dr | T3 S 4+do Q) 1 +dr R |
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where kv, kw, kr, ko, kR, dv, dw, dr, dg and dR are fixed constants
We define similarly P(b, j). In the definition of P(b; ) (resp. P(b, )) the
coefficients weighting the number of elements in the sets in the numerator are
chosen so as to emphasize the arguments in favor of moving the value by, ;
of profile by, to by, ; + & (resp. —d), while the coefficients in the denominator
emphasize the arguments against such a move. The values of the coefficients
were empirically set as follows: ky =2,k = 1,kr = 0.1,kg = kr = 0,dy =
dw =dr =1,dg =5,dg = 1.

The value by, ; of profile b, on criterion j will pos51bly be moved to the
value a; of one of the alternatives a contained in thv h], W or W_
More precisely, it will be set to a; or a value slightly above a;. The exact
new position of the profile is chosen so as to favor a correct assignment for a,
taking into account the assignment rule . For instance, w.r.t. the situation
illustrated in Figure |Z|7 the new value by ; + 0 could be chosen just above
the value of a7 so that criterion 1 would no longer belong to the coalition of
criteria on which a* is at least as good as b;. Such a move would result in
correctly assigning a* to category C;. If the move were driven by the position
of alternative a” on criterion 2, then the new profile value by 2 + ¢ would be
set equal to the performance, a3, of the alternative a” on criterion 2. Such a
move would result in correctly assigning a” to Cs.

All such values a; are located in the interval [bn_1 ;,bpy1,j]. A subset
of such values is chosen in a randomized way as follows. Among the set of
values a;, a value, denoted by b’hJ7 is chosen randomly. We denote by dj, ;
the difference |b§w- — by j|. All values a; located in [bp—1;,bn; — dp,;] and
[bn.; + dpn;, by, ;] constitute a subset of candidate moves. The candidate move
corresponds to the value a; in the selected subset for which P(bA ) is maximal,
A being equal to a; — by, ; (i.e. a positive or negative quantlty) To decide
whether to make the candidate move, a random number r is drawn uniformly
in the interval [0,1] and the value by, ; of profile by, is changed if P(bﬁj) >r.

This procedure is executed for all criteria and all profiles. Criteria are
treated in random order and profiles in ascending order.

Algorithm [2| summarizes how this randomized heuristic operates.

Algorithm 2 Randomized heuristic used for improving the profiles
for all profile by, do
for all criterion j chosen in random order do
Choose, in a randomized manner, a sub-interval of [by_1 j,br41,5]
Select a position in this sub-interval for which P(bA ) is maximal

Draw uniformly a random number 7 from the 1nterval [0,1].
if » < P(by ;) then
Move bh:j to the position corresponding to by, ; + A
Update the alternatives assignment
end if
end for
end for
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5 Experiments

Our aim in these experiments is to analyze how our algorithm compares to the
state-of-the-art in terms of performance in generalization. Such an analysis
enables to appreciate the descriptive ability of the MR-Sort model as compared
to other sorting models presented in the literature.

In this section, we first recall what we observed when we applied our algo-
rithm to retrieve a model that was used to generate artificial data sets. Then,
the algorithm is tested on real data sets.

We describe the experimental design and report the results. The algorithm
and data sets used in this section are available at the following address: http:
//www.github.com/oso/pymcdal

5.1 Empirical validation on simulated data

In|Sobrie et al (2013)), we conducted experiments to study the behavior of the
algorithm on artificial data sets. These are produced as follows. An MR-Sort
model is generated randomly (see [Sobrie et all [2013] for details). We draw
at random vectors of evaluations representing the alternatives and we assign
them using the MR-Sort model. Part of these vectors form the learning set
and the rest constitutes the test set. We first use such datasets to determine
an appropriate set of parameters (N4, Nit, N,) for our heuristic algorithm.

We then conducted experiments to determine the number of assignment
examples required to restore the model with a given accuracy. For a model
involving 3 categories and 10 criteria, more than 400 examples are required to
restore (on average) 95% of the assignments of a test set composed of 10000
assignments. When the number of categories increases to 5, more than 800
examples are required.

Real learning sets generally contain examples that are incompatible with
an MR-Sort model. In order to assess the robustness of our algorithm to
“assignment errors”, we studied its behavior when such errors are introduced in
the learning set. These “errors” were simulated by assigning some alternatives
to a category different from that given by the MR-Sort model. When the
learning set contains a proportion P of errors, we observe that the classification
accuracy obtained with the learned model, i.e. the proportion of test set
alternatives correctly restored, converges towards 1 — P. We also observe that
most alternatives in the learning set that are wrongly assigned by the learned
model are altered examples. Actually, the learned model corrects part of the
introduced assignment errors.

5.2 Data sets and experimental design

For comparison purposes, we use the data sets that were considered by |Tehrani
et al (2012) for testing the performance of a binary classifier based on the Cho-
quet integral. These data sets were taken from two sources: the UCI machine
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learning repository and the WEKA repository. In addition, we consider also
the ASA data set which was compiled and studied by [Lazouni et al| (2013)
(available at http:olivier.sobrie.be/shared/asa). The characteristics of all data
sets are displayed in Table [I} All the attributes in these datasets are treated
as monotone attributes.

Table 1 Data sets

Data set  #instances  #attributes #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4
ASA 898 16 4

The tests are conducted as follows. Each data set is randomly split in two
disjoint parts. The first part is used as learning set and the second part as
test set. The following size ratios between the learning set and the test set are
considered: 20/80, 50/50, 80/20. For each data set and each ratio, a random
drawing of the learning set from the whole data set is repeated 100 times,
yielding 100 instances of a partition of the data set in a learning set and a test
set.

For each learning set instance, the algorithm finds a model that minimizes
the 0/1 loss, i.e. that is compatible with as many examples as possible. After-
wards, the alternatives in the test set are assigned by the learned model and
the resulting assignments are compared to the original ones. This procedure is
thus repeated 100 times for each data set and each relative size of the learning
set.

Two indicators are computed to assess the quality of the learned models:
the 0/1 loss and the Area Under Curve (AUC).

The performance of our heuristic algorithm is not only compared with the
results obtained by Tehrani et al (2012)), but also with the exact solution of the
MIP formulation (whenever it can be obtained) and with another previously
mentioned MCDA method, UTADIS. For the reader’s convenience, we briefly
recall the principles of UTADIS, referring the reader to |[Jacquet-Lagréze and
Siskos| (1982); [Jacquet-Lagreze and Siskos| (2001); |Zopounidis and Doumpos
(2002) for further detail. This method is based on the learning of an additive
value (or utility) function and thresholds that determine the minimal and
maximal values of an alternative that is assigned to a given category. More
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formally, the UTADIS assignment rule reads as follows: for all a € X,
aeCh if  w(a)= Zuj(aj) € [Up—1, Unl, (4)
j=1

where u; are marginal value functions and Uj,—1 (resp. Uy) is the lower thresh-
old value of category C}, (resp. Chy1). UTADIS considers marginal value func-
tions u; that are monotone and piecewise linear. In our experiments, the do-
main of variation of each attribute is divided in three segments of equal length.
Determining the marginal value at the breakpoints is sufficient for determining
the whole marginal value function ;. Using piecewise linear marginal value
functions enables to formulate the problem as a linear program and solve it
with efficient solvers such as IBM ILOG CPLEX.

For all the experimentation, the MR-~Sort metaheuristic is run with a pop-
ulation of 10 models (N,,,¢ = 10) and the maximal number of iterations is
fixed to 10 (N, = 10). The outer loop of the metaheuristic, which adjusts the
profiles and recomputes weights, is repeated 20 times (N;; = 20).

5.3 Binary classification

The algorithm developed by |Tehrani et all (2012) is designed for monotone
sorting in two categories. In order to compare the performance of our algo-
rithm with theirs, the assignments in the data sets presented in Table [1| are
binarized by thresholding at the median, in the same way as was done by
these authors. From these data sets, the parameters of an MR-Sort model are
learned by using 20, 50 or 80 percent of the records as learning alternatives
and the rest as test alternatives.

Our experimentation has two objectives. The first is to compare the qual-
ity of the MR-Sort models found by our metaheuristic with the ones obtained
by an exact optimization method. Therefore, we solve the mixed integer pro-
gramming (MIP) formulation studied in Leroy et al (2011) which minimizes
the 0/1 loss of the model. Whenever the MIP solver is able to find a solution
in the computing time allowed, we assess the learned models by comparing
their average 0/1 loss on the test set.

Our second objective is to compare the performance of the proposed meta-
heuristic with that of other MCDA and machine learning algorithms, UTADIS
(Jacquet-Lagreze and Siskos, 1982 [Doumpos and Zopounidis, 2002), a well-
known MCDA method, and the Choquistic Regression (CR) (Tehrani et all
2012)), a method recently developed in the field of preference learning. To
assess our metaheuristic, we use the average 0/1 loss and AUC computed on
the test sets.

The AUC of an MR-Sort model with two categories C1,Cs is computed
by comparing the concordance indices of the alternatives w.r.t. the profiles.
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The value of the AUC is given by equation .

1 i
AUC:m Z Z 7(a’, a®) (5)

at€As akc A,

with A; (resp. Az), the set of input alternatives classified in Cy (resp. Cb).
In the case of MR-Sort, we define 7(a?, a*) as follows:

' 0 if Zj:a;ZbLj wj < Zj”l?zble Wi
7(at,af) = { 0.5 if Zj:ajzbl,j wj = Zj:a?Zbl,j wj

1 if Zj:a;Zbl’j W > Zj:a(;Zbl’j wj

In the case of UTADIS, the value of AUC is also computed through formula
but 7(a’,a*) is defined differently : it compares the values of the alternatives,
i.e.
0 if u(a®) < u(a®)
T(a',a®) = 0.5 if u(a?) = u(a®)
1 if u(a®) > u(a®).

5.8.1 Results

Table [2 shows the average 0/1 loss obtained on the test sets with the learned
models. Table [3] shows the average value of the AUC. Each entry in these
tables records the average value and standard deviation for 100 random splits
of the data sets into learning and test sets.

In these tables, column “Learning set” displays the percentage of alterna-
tives of the data set used by the algorithms as learning set. Column “META”
shows the results obtained with the metaheuristic described in this paper.
Column “MIP” contains the results obtained with the MIP described in [Leroy
et al (2011). Column “UTADIS” displays the results obtained with UTADIS
and column “CR” contains the results obtained with the Choquistic Regression
(Tehrani et al, |2012)) on all the data sets, except ASA (not available).

In column “MIP”, some cells are empty because the solver was not able to
find a solution for at least one test instance in less than one hour. As compared
to solving the MIP formulation, for the largest data set, i.e. the CEV data
set, the metaheuristic uses 50 seconds on average to find a model when the
learning set consists of 80% of all the examples in the data set.

To assess the ability of the algorithm to find models restoring the assign-
ment of a large number of examples, we compare the average 0/1 loss and
AUC obtained with the MIP and the metaheuristic for the test sets. Note
that the MIP finds a MR-Sort model that is compatible with the largest pos-
sible number of examples from the learning set. There is no other MR-Sort
model restoring correctly more assignment examples.

Table [2] shows that the 0/1 loss obtained by the exact algorithm is on
average 1% smaller than by the metaheuristic. This is due to the fact that the
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Learning set Dataset META MIP UTADIS CR
DBS 18.97+4.23 19.77+4.81 20.08£5.33 17.13+£4.24
CPU 9.94 + 3.23 9.00 £ 3.45 6.52 £ 3.62 8.11+1.03
BCC 28.24£2.73 26.78+2.76 29.15+3.07 27.75+£3.35
MPG 20.25+3.56 20.80+3.26 22.25+3.18 7.09+1.93
20 % dataset ESL 10.42+1.71 10.75+1.58  8.89 +1.60 6.82+£1.29
MMG 16.97+0.87 17.16+1.40 18.40+1.84 17.25+1.20
ERA 21.36 £2.05 20.93+1.74 23.68+1.87 28.89+2.73
LEV 16.74 £1.87 16.08+1.73 16.54£1.60 14.99+1.22
CEV 14.88 +1.35 - 13.00+1.42  4.48+0.89
ASA 2.29+1.09 - 3.69+1.41 -
DBS 16.23 £4.69 16.27+4.26 14.80£4.21 15.72+4.16
CPU 6.75 £ 2.37 6.40 £ 2.39 2.30 £2.38 4.64+2.81
BCC 27.50 £ 3.17 - 28.54 +2.46  26.87 +2.82
MPG 17.81 £2.37 - 20.90£2.36  5.77+£2.51
50 % dataset ESL 10.04 £1.86 10.18 £1.55  7.83 +1.63 6.01 £1.26
MMG 17.32 £ 1.51 - 17.58 £1.52 16.67 £1.44
ERA 20.56 £1.73 1958 +£1.37 23424171 2844+3.06
LEV 15.924+1.22 14.22+1.54 15.56+1.32 13.72+1.25
CEV 14.83 £0.95 - 13.24 £1.17  3.76 £ 0.59
ASA 1.38 £0.61 - 2.474+0.82 -
DBS 15.924+6.98 14.80£8.11 12.80+5.01 14.16£6.81
CPU 6.40 £ 3.04 5.98 £ 3.15 1.52+2.14 2.12+3.01
BCC 26.77 £5.47 - 29.13+5.10 24.96 £4.85
MPG 16.86 + 3.69 - 20.80 £3.88  5.51£1.60
80 % dataset ESL 10.01 £2.97 10.08£2.47 7.44+2.35 5.42 4+ 2.18
MMG 16.98 +2.79 - 17.34 £2.65 15.84 £2.51
ERA 20.31 £2.50 18.56 +2.60 23.56 £2.92 28.13 £2.80
LEV 16.16 £2.22 13.59+1.85 15.724+2.22 13.14+1.76
CEV 15.06 + 1.66 - 13.36 £1.67  2.73+0.89
ASA 1.16 £1.74 - 2.11+1.02 -

Table 2 Average and standard deviation of the 0/1 loss (in percent) of the test set for
learning sets of different sizes.

MIP finds models restoring an optimal number of assignment examples (from
the learning set) while the metaheuristic can remain stuck in local minima.
However this better performance does not hold for all data sets when applied
to the test set. For instance, the MIP returns results slightly worse than the
metaheuristic for the DBS and ESL data sets. This is probably due to an
overfitting effect on the learning set.

We observe in Table [3| that the average AUC of the metaheuristic is close
to the one of the MIP. This indicates that the quality of the classifiers obtained
with the MIP and the metaheuristic are similar.

In order to see whether the algorithm proposed in this paper can be useful
in the context of preference learning problems, we compare our results with two
other methodologies: UTADIS (Jacquet-Lagreze and Siskos| {1982; |Doumpos
and Zopounidis| 2002) and Choquistic Regression (CR) (Tehrani et al, 2012).

The performance of MR-Sort algorithms is close to the performance of
UTADIS and CR for the DBS, CPU, BCC, MMG and LEV data sets. The 0/1
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Learning set Data set META MIP UTADIS CR
DBS 87.61 £4.62 86.37 £4.63 88.86+4.96 92.90 + 3.22
CPU 95.31 £2.47 94974262 97.89+£283 98.22+1.21
BCC 68.10 £4.58 71.55+£3.65 66.50+5.27 64.00 +6.41
MPG 83.37 £2.91 82.15+£3.68 81.62+3.35 97.88+1.60
20 % data set ESL 95.69 £1.14 95.10£1.66 97.04+0.95 96.70+0.74
MMG 88.28 £1.29 88.77+£1.51 86.50+2.94 88.67+1.23
ERA 72.56 £2.38 71.824+3.28 T4.09+1.75 76.69 =+ 3.34
LEV 85.30 £2.58 84.24+291 87.07+1.46 89.71+0.98
CEV 89.68 £1.16 - 92.35£1.83 98.25+0.80
ASA 98.11 £1.25 - 98.73 £ 0.90 -
DBS 90.74 £3.66 89.98+3.36 93.25+3.45 93.41+2.28
CPU 97.01 £1.40 96.45+£1.94 99.40+1.31 99.20+0.73
BCC 69.29 £ 3.98 - 66.50 £52.7 69.12 £ 4.69
MPG 83.37 £2.31 - 82.72£2.43 98.18£0.75
50 % data set ESL 96.40 £0.99 95.63+£1.14 97.47+1.16 97.20+0.84
MMG 88.62 £ 1.38 - 86.67 £3.85 90.03 £1.32
ERA 73.66 £2.33 71.67+274 T7437+211 77.05=£3.10
LEV 87.21+1.47 85.11+2.19 87.46=+1.37 90.98+1.03
CEV 89.60 £0.73 - 93.39£1.38 99.12+0.24
ASA 99.21 £0.72 - 99.48 £ 0.34 -
DBS 90.19 £6.06 90.80£6.73 94.76 £4.01 94.27 +4.43
CPU 97.21 £2.19 96.56 £2.37 99.89+0.30 99.71 +£0.63
BCC 70.56 + 8.64 - 66.51 £6.59  73.49 £6.92
MPG 86.13 £ 3.41 - 82.10 £4.34 98.55+£1.08
80 % data set ESL 96.13£1.70 95.68+1.65 97.78 £1.17 97.66 £ 1.50
MMG 88.60 £ 2.65 - 86.82 £4.70 91.35+£2.33
ERA 73.79+£3.51 72424477 T497+4.02 76.70£2.90
LEV 86.63 £2.65 84.994+3.32 87.41£2.17 91.22+2.02
CEV 89.41 £1.35 - 93.99 £1.11  99.59 £ 0.27
ASA 99.55 £ 0.64 - 99.64 £ 0.34 -

Table 3 Average and standard deviation of the AUC (in percent) of the test set for learning
sets of different sizes.

losses observed on the test set differ by at most 4% on average. For the MPG
and CEV data sets, CR clearly returns better average results (more than 10%
better in terms of 0/1 loss) than the MR-Sort algorithms and UTADIS. This
may be due to the capability of the Choquet integral to represent interactions
between criteria (see e.g. |Grabisch and Roubens| [2000). The assignments in
the MPG and CEV data sets might require this type of modeling feature.

In contrast, for the ERA data set, the MR-Sort algorithms and UTADIS
are definitely better than CR. Their advantage regarding the average 0/1 loss
amounts to almost 8%.

As compared with UTADIS and CR, the average AUC value of the MR-
Sort algorithms are worse. The difference is about five percent for DBS, CPU,
BCC, ESL, MMG and ERA data sets. For the MPG and CEV data sets, there
is a marked advantage of CR over the other algorithms. We have seen that
CR is also definitely better regarding 0/1 loss for the MPG data set, which
suggests that the model underlying CR is better suited for representing the
MPG data.
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(a) META - ERA 20 %  (b) MIP - ERA 20 % (c) UTADIS - ERA 20 %

dl C’Q Cl 02 él 02
68.83  5.67 69.38  5.12 63.98 10.54
Ch +3.11 +3.21 Cq +2.41 +2.47 Cq +2.67 +2.96
15.69 9.81 15.81 9.70 13.14 12.34
Ca +2.39 +2.16 Co +1.74  +1.54 Ca +1.56 +1.25

(d) META - ERA 50 %  (e) MIP - ERA 50 %  (f) UTADIS - ERA 50 %

él CQ él 62 él CA’2
69.26 5.10 71.23  3.34 64.36 9.98
C1 +2.61 +2.55 Ch +2.01  +1.74 Ch +2.12 +2.62
15.46 10.17 16.24 9.18 13.43 12.22
Co +2.16 +1.73 Co +1.41 +1.11 Co +1.75 +1.32

(g) META - ERA 80 %  (h) MIP - ERA 80 % (i) UTADIS - ERA 80 %

C’1 C’z él éz Ol 6’2
69.60 5.03 72.59  2.29 63.90 10.21
C1 +3.42 +2.38 C1 +2.57  £1.00 C1 +3.17 +2.85
15.28  10.09 16.27  8.86 13.35 12.55
Co +2.89 +2.26 Co +2.36 +1.77 Co +2.58 +2.32

Table 4 Confusion matrices of the test set for the (binarized) ERA data set. Actual class
in rows, predicted class in columns.

On the contrary, the average AUC of the ERA data set, for which the
MR-Sort MIP and metaheuristic did better than CR in term of 0/1 loss, is
worse with the MR-Sort MIP and metaheuristic than with CR. UTADIS does
even better than MR-Sort algorithms in terms of AUC for this data set.

In order to better understand the latter results, the confusion matrices for
the MR-Sort algorithms and UTADIS and all learning set sizes are displayed
in Table {4f for the ERA data set (the confusion matrices relative to the other
data sets can be found in [Sobrie et al (2015)). These show the average distri-
bution of the alternatives in the test sets in actual (Cy, Cs) versus predicted
classes (C’l, C’g) As compared with UTADIS, the MR-Sort algorithms classify
correctly, on average, a higher number of instances from class C7 and a lower
number of instances from class Co. We also notice that there are, on average,
more alternatives belonging to class Co than to class C7. Alternatives mis-
classified by the MR-Sort algorithms mostly belong to category Cs. It is likely
that the concordance index of some of these alternatives is equal or lower than
that of some alternatives which are correctly classified in C;. The contribution
of these alternatives to the AUC index is therefore equal to 0.5 or 0, which
decreases the value of the AUC.

It should be noted that the MR-Sort algorithms are designed in view of
minimizing the 0/1 loss. They do not include specific mechanisms taking into
account possible imbalance of classes in the learning set, which has an impact
on AUC.
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5.8.2 Comments

Computing time becomes quickly an issue with the MIP when the size of the
learning set increases. It is therefore not an option to use it to deal with large
data sets, which, in contrast, can easily be handled by the metaheuristic.

The metaheuristic we developed performs better than UTADIS and CR
for at least one data set (ERA). The same observation holds for the MIP.
Regarding the 0/1 loss, we note that the MR-Sort model seems particularly
well adapted for the ASA data set. This shows that for some types of data
sets, a model-based approach like MR-Sort is well suited.

5.4 Model interpretation

An important feature of model-based preference learning is interpretability.
This section aims to illustrate on the (binarized) ESL data set how an MR-
Sort model may provide an interpretation of the classification rationale.

The ESL data set is composed of 488 instances, which are evaluated on 4
attributes, denoted 1, 2, 3 and 4. Each instance corresponds to the profile of
an applicant for a job. The applicants were evaluated by psychologists on the
basis of psychometric tests and interviews. Attribute scales are normalized
between 0 and 1. An overall score between 1 and 9 is assigned to each candi-
date. It represents the degree of suitability of the applicant for the job. The
data set was “binarized”, separating the applicants in two classes: “suitable”
candidates have a score comprised between 6 and 9, while “not suitable” ones
have a score equal to or lower than 5.

The model described in Figure [3| was obtained using 50 percent of the
instances as learning set and the rest as test set. This model is able to represent
93% of the assignments of the learning set instances with an AUC equal to
97,42%. In generalization, the model classifies correctly 88,11% of the test
instances with an AUC of 95,34%.

On each criterion, the profile value separates the evaluations that con-
tribute to assigning the candidates to the “suitable” class from the others.
The assignment rule underlying the model presented in Figure [3 has a simple
formulation. A candidate is assigned to the “suitable” class if its performances
are better than or equal to these of the profile on at least one of the three fol-
lowing criteria coalitions: {1,2,4}, {1,3,4} or {2,3,4}. The sum of the criteria
weights belonging to each of these coalitions is always greater than the majority
threshold, set to 70. We have wi +ws+w4 = w1 +wsz+ws = wo+wz+wy = 80.
In other words, to be considered as “suitable”, an applicant may have only
one weakness, on one of the first three dimensions. As an illustration, a candi-
date assessed by the performance vector (0.889,0.889,0.5,0.833) is considered
“suitable” for the job since its evaluation is worse than the profile only on
criterion 3 (0.5 < 0.667). On the contrary, an applicant characterized by the
performance vector (0.222,0.889,0.5,0.833) is considered “not suitable” for
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Fig. 3 An MR-Sort model obtained for the (binarized) ESL data set by using 50% of
the instances as learning set. The profile delimiting category “Suitable” from category
“Not suitable” is represented by the dotted line. Criteria weights are displayed between
parentheses below each criterion axis. The majority threshold is denoted by A.

the job since it lies under the profile level on criteria 1 and 3 (0.222 < 0.556
on criterion 1 and 0.5 < 0.667 on criterion 3).

The interested reader will find in |Sobrie et all (2016a) a medical application
of the MR-Sort Method in the domain of pre-anesthesia patient assessment;
[Sobrie et all (2016a) also discuss the issue of interpretability of MR-Sort mod-
els.

6 Conclusion

In this paper, we proposed and studied a method for learning the assignment
of objects evaluated on several attributes (or criteria) into ordered categories.
This method is based on a well-understood preference model
[Marchant| |2007alb). For assigning objects, it takes into account the evaluation
of the objects in an ordinal manner, i.e. only the relative position of the
evaluations w.r.t a vector of minimal requirements (“profile”) matters.

The heuristic algorithm proposed for learning such a model on the basis
of assignment examples was evaluated on a data sets benchmark. The first
observation is that our heuristic provides good approximations of the MR-
Sort model that can be learned by an exact method (MIP), whenever the
latter can be computed in a reasonable amount of time. For most data sets,
the classification performance of our algorithm is close to the best results
obtained by state-of-the-art algorithms. It is definitely better for one of the
data sets. Since the MR-Sort model relies on a specific form of regularity
in the assignments, it is not surprising that some data sets can be better
approximated using our algorithm than some others. What is worth noticing,
actually, is that our heuristic behaves competitively on the whole benchmark.

Another positive feature of the MR-Sort model stems from the fact that
the computed classifications can be explained to the user as the application of
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a compact and intuitive rule (see e.g. [Sobrie et al (2016al)). This is linked with
the origins of the model which has been initially used in preference modeling
and decision aiding. In these domains, preferences are modeled by engaging
into interactions with a decision maker (instead of being learned automatically
on the basis of examples). Therefore, the preference models rely on intuitive
concepts (e.g. limit profile, weights, majority threshold), which are used in
the preference elicitation process. The resulting rules for comparing or sorting
objects can be formulated in terms of the same concepts, which allows to
explain their consequences to the decision maker. Understanding the model
issued from an algorithm is likely to increase the trust of the user in the
obtained classifier. Explainability is important e.g. in medical applications
but also in management and engineering applications.

Several extensions of the MR-~Sort model, which enhance its expressivity
without impairing its explainability, have yet to be explored in a preference
learning perspective. One extension consists in introducing the possibility of
vetoes. A weto (Bouyssou and Marchant, [2007a; [Roy and Bouyssou, |1993)
forbids an object to be assigned to a category if its performance is too much
below the lower limit profile of the category on some criterion. Clearly, assign-
ment rules combining a concordance condition (such as ) with a non-veto
condition mitigates the purely ordinal interpretation of the criteria by cre-
ating additional anchor values. Besides the lower limit profile value on each
criterion, we have to specify another value, beneath the profile value, which
constitutes a minimal requirement in order to be eligible for assignment in a
category.

Another extension of the MR-Sort model is known (Bouyssou and Marchant),
2007alb) as the Non-Compensatory Sorting model (NCS). In this model, which
may also accommodate non-veto conditions, the criteria weights are substi-
tuted by a capacity, which allows to model criteria interactions (positive/negative
synergies). These two types of extensions are the subject of ongoing investi-
gations, see (Sobrie et al, 2016b; Meyer and Olteanu, 2017).
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