
Learning MR-Sort rules with coalitional veto

Olivier Sobrie1,2 Vincent Mousseau1 Marc Pirlot2

1 Université Paris-Saclay - CentraleSupélec
2 Université de Mons - Faculté polytechnique

November 7, 2016

Learning MR-Sort rules with coalitional veto O. Sobrie - November 7, 2016 1 / 24



1 Sorting problem

2 MR-Sort

3 Learning a MR-Sort model

4 MR-Sort with coalitional veto

5 Learning a MR-SortCV model

6 Experimental results

7 Conclusion

Learning MR-Sort rules with coalitional veto O. Sobrie - November 7, 2016 2 / 24



1. Sorting problem

1 Sorting problem

2 MR-Sort

3 Learning a MR-Sort model

4 MR-Sort with coalitional veto

5 Learning a MR-SortCV model

6 Experimental results

7 Conclusion

Learning MR-Sort rules with coalitional veto O. Sobrie - November 7, 2016 3 / 24



1. Sorting problem

Sorting problem

Settings

I Assignment of alternatives in categories
I Categories are ordered
I Alternatives are evaluated on monotone criteria

Example of sorting problem

I Assignment of hotels in two categories : “Bad” and “Good”

. . .
distance to the beach 600m 300m 50m 200m . . .
distance to the center 500m 100m 600m 300m . . .

price 150e 130e 90e 80e . . .
size 45m2 35m2 30m2 25m2 . . .

rating . . .
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1. Sorting problem

Sorting problem

Settings

I Assignment of alternatives in categories
I Categories are ordered
I Alternatives are evaluated on monotone criteria

Example of sorting problem

I Assignment of hotels in two categories : “Bad” and “Good”

Good Bad

�Plaza

Hilton

Travelhodge
Majestic

Rambla

Front Maritim

Miramar

Hotel W
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2. MR-Sort

Majority rule sorting model

I Sorting model (p ordered categories, i.e. Cp � Cp−1 � . . . � C 1)
I Axiomatized by Bouyssou and Marchant (2007a,b)

C1

C2

C3

crit. 1
w1

crit. 2
w2

crit. 3
w3

crit. 4
w4

crit. 5
w5

b1

b2

I n weights (w1, . . . ,wn)
I 1 majority threshold (λ)
I p− 1 profiles (b1, . . . , bp−1)

Assignment rule

a ∈ C h

⇔∑
j :aj≥bh−1

j

wj ≥ λ and
∑

j :aj≥bhj

wj < λ
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2. MR-Sort

MR-Sort applied to the introductory example

I Sorting accommodations in two categories : Good and Bad

Bad

Good

200m 400m 100e 25m2 3

0m 0m 0e 45m2 5

600m 800m 200e 5m2 1

b1

crit.

wj

beach

0.2

center

0.2

price

0.2

size

0.2

rating

0.2

λ = 0.6

Assignment rule

hotel ∈ Good ⇔
∑

j :aj≥b1
j

wj ≥ λ
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2. MR-Sort

MR-Sort applied to the introductory example

I Sorting accommodations in two categories : Good and Bad

Bad

Good

300m 400m 100e 25m2 3

0m 0m 0e 45m2 5

600m 800m 200e 5m2 1

b1

crit.

wj

beach

0.2

center

0.2

price

0.2

size

0.2

rating

0.2

λ = 0.6

50m

600m

90e 30m2

Assignment rule

hotel ∈ Good ⇔
∑

j :aj≥b1
j

wj ≥ λ

Hilton

∈ Good

∑
j :aj≥b1

j

wj = 0.8
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2. MR-Sort

MR-Sort applied to the introductory example

I Sorting accommodations in two categories : Good and Bad

Bad

Good

300m 400m 100e 25m2 3

0m 0m 0e 45m2 5

600m 800m 200e 5m2 1

b1

crit.

wj

beach

0.2

center

0.2

price

0.2

size

0.2

rating

0.2

λ = 0.6

300m 500m
130e

35m2

4

Assignment rule

hotel ∈ Good ⇔
∑

j :aj≥b1
j

wj ≥ λ

Plaza

∈ Bad

∑
j :aj≥b1

j

wj = 0.4
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3. Learning a MR-Sort model

Heuristic algorithm for learning a MR-Sort model
Initialization of
Nmod MR-Sort

models

LP learning the
weights and the
majority threshold

Heuristic adjus-
ting the profiles

Stopping
criterion met ?

MR-Sort
model

Reinitialize⌊
Nmod

2

⌋
worst models

Learning set
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4. MR-Sort with coalitional veto

MR-Sort with binary veto rule

I Sorting model (p ordered categories, i.e. Cp � Cp−1 � . . . � C 1)
I Veto if alternative worse than the veto profile on any criterion

C1

C2

C3

crit. 1
w1

crit. 2
w2

crit. 3
w3

crit. 4
w4

crit. 5
w5

b1

b2

v2

v1

I n weights (w1, . . . ,wn)
I 1 majority threshold (λ)
I p− 1 profiles (b1, . . . , bp−1)
I p − 1 veto profiles

(v1, . . . , vp−1)

Assignment rule
a ∈ Ch

⇔∑
j :aj≥bh−1

j

wj ≥ λ and @j : aj ≤ vh−1
j

AND∑
j :aj≥bhj

wj < λ or ∃j : aj ≤ vh
j
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4. MR-Sort with coalitional veto

MR-Sort with binary veto rule

I Veto if alternative worse than the veto profile on any criterion

Bad

Good

300m 400m 100e 25m2 3

0m 0m 0e 45m2 5

600m 800m 200e 5m2 1

b1

crit.
wj

beach
0.2

center
0.2

price
0.2

size
0.2

rating
0.2

λ = 0.6

50m

200m

150e

30m2

2

v1
550m

700m

125e

Assignment rule
hotel ∈ Good

⇔∑
j :aj≥b1

j

wj ≥ λ and @j : aj ≤ v1
j

Rambla

∈ Bad
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4. MR-Sort with coalitional veto

MR-Sort with coalitional veto rule

I Sorting model (p ordered categories, i.e. Cp � Cp−1 � . . . � C 1)
I Veto if alternative worse than the veto profile on a subset of criteria

C1

C2

C3

crit. 1
w1

z1

crit. 2
w2

z2

crit. 3
w3

z3

crit. 4
w4

z4

crit. 5
w5

z5

b1

b2

v2

v1

I n weights (w1, . . . ,wn)
I n veto weights (z1, . . . , zn)
I 1 majority threshold (λ)
I 1 veto threshold (Λ)
I p− 1 profiles (b1, . . . , bp−1)
I p − 1 veto profiles

(v1, . . . , vp−1)
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MR-Sort with coalitional veto rule

I Sorting model (p ordered categories, i.e. Cp � Cp−1 � . . . � C 1)
I Veto if alternative worse than the veto profile on a subset of criteria

C1

C2

C3

crit. 1
w1

z1

crit. 2
w2

z2

crit. 3
w3

z3

crit. 4
w4

z4

crit. 5
w5

z5

b1

b2

v2

v1

Assignment rule
a ∈ Ch

⇔∑
j :aj≥bh−1

j

wj ≥ λ and
∑

j :aj≤vhj

zj < Λ

AND∑
j :aj≥bhj

wj < λ or
∑

j :aj≤vhj

zj ≥ Λ
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4. MR-Sort with coalitional veto

MR-Sort with coalitional veto rule

I Veto if alternative worse than the veto profile on a subset of criteria

Bad

Good

300m 400m 100e 25m2 3

0m 0m 0e 45m2 5

600m 800m 200e 5m2 1

b1

crit.
wj

zj

beach
0.2

0.2

center
0.2

0.2

price
0.2

0.2

size
0.2

0.2

rating
0.2

0.2

λ = 0.6 Λ = 0.4

50m

200m

150e

30m2

2

150m

100m

175e

35m2

4

v1
550m

700m

125e

Assignment rule
hotel ∈ Good

⇔∑
j :aj≥b1

j

wj ≥ λ and
∑

j :aj≤v1
j

zj < Λ

Rambla

∈ Bad

Majestic

∈ Good
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5. Learning a MR-SortCV model

Heuristic algo. for learning a MR-SortCV model
Initialization of
Nmod MR-Sort

models

LP learning the
weights and the
majority threshold

Heuristic adjus-
ting the profiles

Stopping
criterion met ?

MR-Sort
model

Reinitialize⌊
Nmod

2

⌋
worst models

Learning set Initialize a set
of veto profiles

LP learning the
veto weights
and threshold

Heuristic ad-
justing the
veto profiles

Discard or
keep veto
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6. Experimental results

Experimental results I

I Datasets used in Tehrani et al. (2012); Sobrie et al. (2015)
I 120 to 1728 instances
I 4 to 8 attributes
I 2 to 36 categories

Data set #instances #attributes #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4
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6. Experimental results

Experimental results II

I Categories have been binarized
I Datasets split in twofold 50/50 partition : a learning and a test set

(operation repeated 100 times)
I Average classification accuracy of the test set :

Data set MR-Sort MR-SortCV

DBS 0.8377± 0.0469 0.8390± 0.0476
CPU 0.9325± 0.0237 0.9429± 0.0244
BCC 0.7250± 0.0379 0.7044± 0.0299
MPG 0.8219± 0.0237 0.8240± 0.0391
ESL 0.8996± 0.0185 0.9024± 0.0179
MMG 0.8268± 0.0151 0.8267± 0.0119
ERA 0.7944± 0.0173 0.7959± 0.0270
LEV 0.8408± 0.0122 0.8551± 0.0171
CEV 0.8516± 0.0091 0.8516± 0.0665

I MR-SortCV doesn’t improve the performances
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6. Experimental results

Experimental results III

I Results obtained with the original datasets
I Datasets split in twofold 50/50 partition : a learning and a test set

(operation repeated 100 times)
I Average classification accuracy of the test set :

Dataset # cat. MR-Sort MR-SortCV

CPU 4 0.8039± 0.0354 0.8469± 0.0426
ERA 4 0.5123± 0.0233 0.5230± 0.0198
LEV 5 0.5662± 0.0258 0.5734± 0.0213
CEV 4 0.7664± 0.0193 0.7832± 0.0130

I MR-SortCV performs better with more than 2 categories
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6. Experimental results

Experimental results IV

I Tests with artificial datasets
I Learning set composed of 1000 alternatives assigned to 2
categories by a random generated MR-SortCV model composed
of 4 to 7 criteria

I Test set composed of 10000 alternatives
I The learning set is used as input of the heuristic algorithm learning a

MR-SortCV model

# criteria Learning set Test set

4 0.9908± 0.01562 0.98517± 0.01869
5 0.9904± 0.01447 0.98328± 0.01677
6 0.9860± 0.01560 0.97547± 0.02001
7 0.9827± 0.01766 0.96958± 0.02116

I The learned models restore on average ∼ 99% of the examples
I Good performances in generalization
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7. Conclusion

1 Sorting problem

2 MR-Sort

3 Learning a MR-Sort model

4 MR-Sort with coalitional veto

5 Learning a MR-SortCV model

6 Experimental results

7 Conclusion

Learning MR-Sort rules with coalitional veto O. Sobrie - November 7, 2016 22 / 24



7. Conclusion

Conclusion

I New and general form of veto condition
I “Reversed” MR-Sort (concordance) rule
I No significant improvements
I Veto adds limited descriptive ability to the MR-Sort model
I It confirms the results obtained by Olteanu and Meyer (2014)
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7. Conclusion

Vielen Dank für Ihre
Aufmerksamkeit
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