Learning MR-Sort rules with coalitional veto

Olivier Sobrie^{1,2}

Vincent Mousseau¹ Marc Pirlot²

¹ Université Paris-Saclay - CentraleSupélec ² Université de Mons - Faculté polytechnique

November 7, 2016

- 2 MR-Sort
- **3** Learning a MR-Sort model
- 4 MR-Sort with coalitional veto
- 5 Learning a MR-SortCV model
- 6 Experimental results

7 Conclusion

▶ < ∃ ▶ < ∃ ▶</p>

2 MR-Sort

- **3** Learning a MR-Sort model
- 4 MR-Sort with coalitional veto
- 5 Learning a MR-SortCV model
- 6 Experimental results

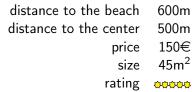
7 Conclusion

Settings

- Assignment of alternatives in categories
- Categories are ordered
- Alternatives are evaluated on monotone criteria

Example of sorting problem

Assignment of hotels in two categories : "Bad" and "Good"



150€

 $45m^2$

 $35m^2$

50m

600m

 $30m^2$

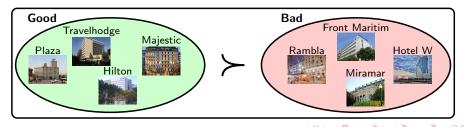
 $25m^2$

Settings

- Assignment of alternatives in categories
- Categories are ordered
- Alternatives are evaluated on monotone criteria

Example of sorting problem

Assignment of hotels in two categories : "Bad" and "Good"



2 MR-Sort

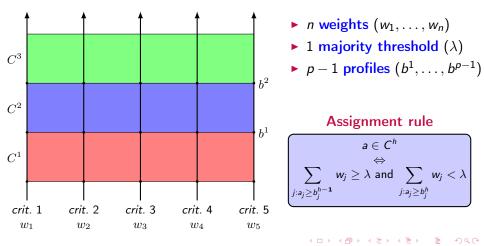
- **3** Learning a MR-Sort model
- 4 MR-Sort with coalitional veto
- 5 Learning a MR-SortCV model
- 6 Experimental results

7 Conclusion

2. MR-Sort

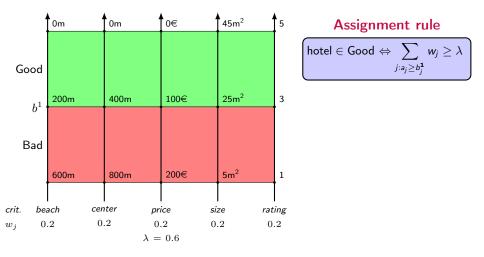
Majority rule sorting model

- ▶ Sorting model (*p* ordered categories, i.e. $C^p \succ C^{p-1} \succ ... \succ C^1$)
- Axiomatized by Bouyssou and Marchant (2007a,b)



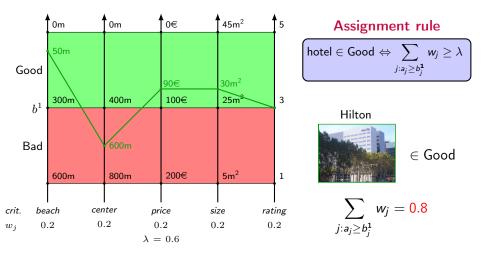
MR-Sort applied to the introductory example

Sorting accommodations in two categories : Good and Bad



MR-Sort applied to the introductory example

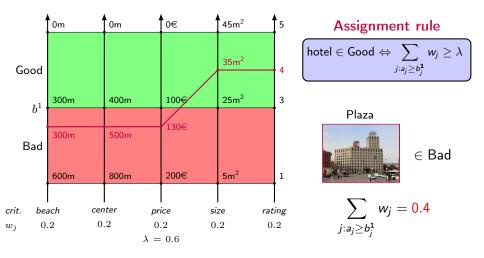
Sorting accommodations in two categories : Good and Bad



イロト イポト イヨト イ

MR-Sort applied to the introductory example

Sorting accommodations in two categories : Good and Bad



イロト イ押ト イヨト イ

2 MR-Sort

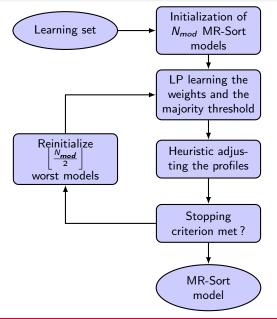
3 Learning a MR-Sort model

4 MR-Sort with coalitional veto

5 Learning a MR-SortCV model

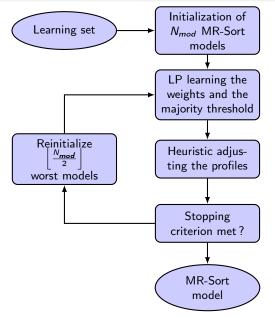
6 Experimental results

7 Conclusion



< ロ > < 同 > < 回 > < 回 >

3. Learning a MR-Sort model



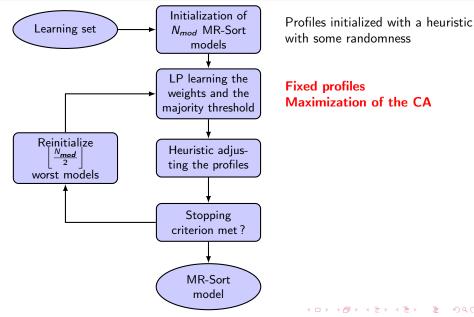
Profiles initialized with a heuristic with some randomness

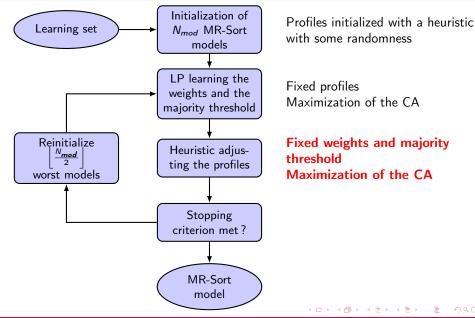
Learning MR-Sort rules with coalitional veto

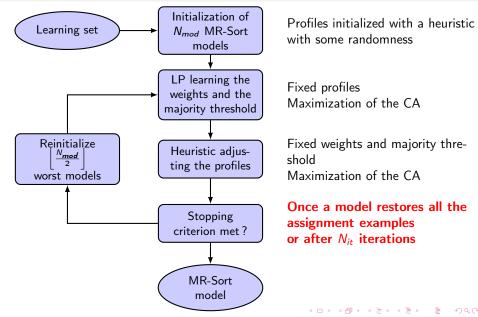
O. Sobrie - November 7, 2016 9 / 24

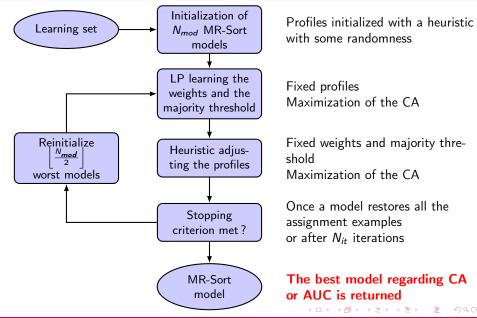
< ロ > < 同 > < 回 > < 回 >

3. Learning a MR-Sort model









2 MR-Sort

3 Learning a MR-Sort model

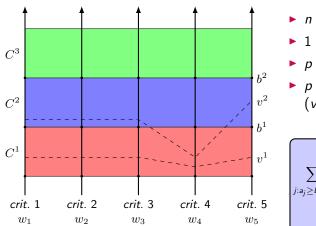
4 MR-Sort with coalitional veto

- 5 Learning a MR-SortCV model
- 6 Experimental results

7 Conclusion

MR-Sort with binary veto rule

▶ Sorting model (p ordered categories, i.e. C^p ≻ C^{p-1} ≻ ... ≻ C¹)
▶ Veto if alternative worse than the veto profile on any criterion

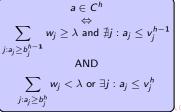


- *n* weights (w_1, \ldots, w_n)
- 1 majority threshold (λ)

•
$$p-1$$
 profiles (b^1,\ldots,b^{p-1})

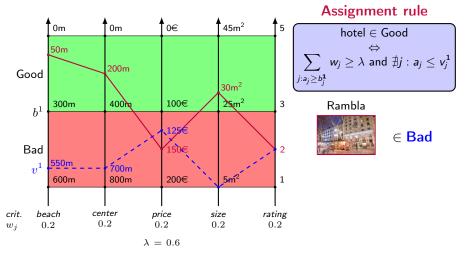
•
$$p-1$$
 veto profiles
 (v^1, \ldots, v^{p-1})

Assignment rule



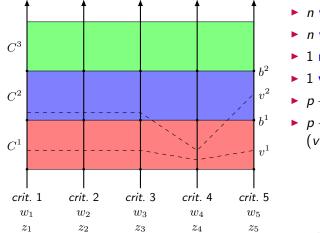
MR-Sort with binary veto rule

Veto if alternative worse than the veto profile on any criterion



MR-Sort with coalitional veto rule

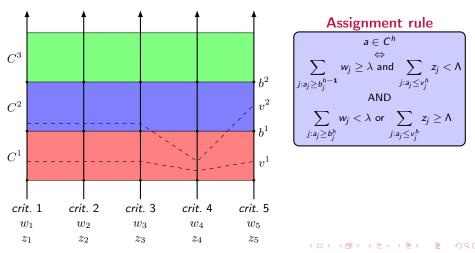
- ▶ Sorting model (*p* ordered categories, i.e. $C^p \succ C^{p-1} \succ ... \succ C^1$)
- Veto if alternative worse than the veto profile on a subset of criteria



- *n* weights (w_1, \ldots, w_n)
- *n* veto weights (z_1, \ldots, z_n)
- 1 majority threshold (λ)
- ► 1 veto threshold (Λ)
- ▶ p-1 profiles $(b^1, ..., b^{p-1})$
- p-1 veto profiles (v^1, \ldots, v^{p-1})

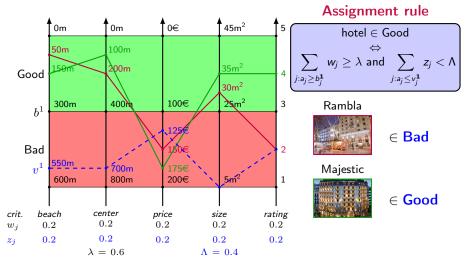
MR-Sort with coalitional veto rule

- ▶ Sorting model (*p* ordered categories, i.e. $C^p \succ C^{p-1} \succ ... \succ C^1$)
- Veto if alternative worse than the veto profile on a subset of criteria



MR-Sort with coalitional veto rule

Veto if alternative worse than the veto profile on a subset of criteria



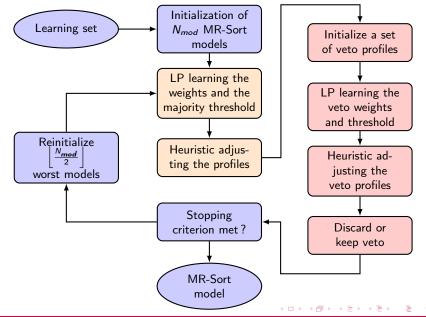
2 MR-Sort

- **3** Learning a MR-Sort model
- 4 MR-Sort with coalitional veto

5 Learning a MR-SortCV model

6 Experimental results

7 Conclusion



2 MR-Sort

- 3 Learning a MR-Sort model
- 4 MR-Sort with coalitional veto
- 5 Learning a MR-SortCV model

6 Experimental results

7 Conclusion

6. Experimental results

Experimental results I

- ▶ Datasets used in Tehrani et al. (2012); Sobrie et al. (2015)
- 120 to 1728 instances
- 4 to 8 attributes
- 2 to 36 categories

Data set	#instances	#attributes	#categories
DBS	120	8	2
CPU	209	6	4
BCC	286	7	2
MPG	392	7	36
ESL	488	4	9
MMG	961	5	2
ERA	1000	4	4
LEV	1000	4	5
CEV	1728	6	4

Experimental results II

- Categories have been binarized
- Datasets split in twofold 50/50 partition : a learning and a test set (operation repeated 100 times)
- Average classification accuracy of the test set :

Data set	MR-Sort	MR-SortCV
DBS	0.8377 ± 0.0469	0.8390 ± 0.0476
CPU	0.9325 ± 0.0237	0.9429 ± 0.0244
BCC	0.7250 ± 0.0379	0.7044 ± 0.0299
MPG	0.8219 ± 0.0237	0.8240 ± 0.0391
ESL	0.8996 ± 0.0185	0.9024 ± 0.0179
MMG	0.8268 ± 0.0151	0.8267 ± 0.0119
ERA	0.7944 ± 0.0173	0.7959 ± 0.0270
LEV	0.8408 ± 0.0122	0.8551 ± 0.0171
CEV	0.8516 ± 0.0091	0.8516 ± 0.0665

MR-SortCV doesn't improve the performances

6. Experimental results

Experimental results III

- Results obtained with the original datasets
- Datasets split in twofold 50/50 partition : a learning and a test set (operation repeated 100 times)
- Average classification accuracy of the test set :

Dataset	# cat.	MR-Sort	MR-SortCV
CPU	4	$\textbf{0.8039} \pm \textbf{0.0354}$	0.8469 ± 0.0426
ERA	4	0.5123 ± 0.0233	0.5230 ± 0.0198
LEV	5	0.5662 ± 0.0258	0.5734 ± 0.0213
CEV	4	0.7664 ± 0.0193	0.7832 ± 0.0130

MR-SortCV performs better with more than 2 categories

Experimental results IV

- Tests with artificial datasets
- Learning set composed of 1000 alternatives assigned to 2 categories by a random generated MR-SortCV model composed of 4 to 7 criteria
- Test set composed of 10000 alternatives
- The learning set is used as input of the heuristic algorithm learning a MR-SortCV model

# criteria	Learning set	Test set
4	0.9908 ± 0.01562	0.98517 ± 0.01869
5	0.9904 ± 0.01447	0.98328 ± 0.01677
6	0.9860 ± 0.01560	0.97547 ± 0.02001
7	0.9827 ± 0.01766	0.96958 ± 0.02116

- The learned models restore on average ~ 99% of the examples
- Good performances in generalization

2 MR-Sort

- **3** Learning a MR-Sort model
- 4 MR-Sort with coalitional veto
- 5 Learning a MR-SortCV model
- 6 Experimental results

Conclusion

- New and general form of veto condition
- "Reversed" MR-Sort (concordance) rule
- No significant improvements
- Veto adds limited descriptive ability to the MR-Sort model
- It confirms the results obtained by Olteanu and Meyer (2014)

Vielen Dank für Ihre Aufmerksamkeit

References I

- Bouyssou, D. and Marchant, T. (2007a). An axiomatic approach to noncompensatory sorting methods in MCDM, I : The case of two categories. *European Journal of Operational Research*, 178(1) :217–245.
- Bouyssou, D. and Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II : More than two categories. *European Journal of Operational Research*, 178(1) :246–276.
- Olteanu, A. L. and Meyer, P. (2014). Inferring the parameters of a majority rule sorting model with vetoes on large datasets. In *DA2PL 2014 : From Multicriteria Decision Aid to Preference Learning*, pages 87–94.
- Sobrie, O., Gillis, N., Mousseau, V., and Pirlot, M. (2015). Using polynomial marginal utility functions in UTADIS. In *27th European Conference on Operational Research*, Glasgow, Scotland.
- Tehrani, A. F., Cheng, W., Dembczyński, K., and Hüllermeier, E. (2012). Learning monotone nonlinear models using the Choquet integral. *Machine Learning*, 89(1–2) :183–211.