Integration of ELECTRE TRI in a GIS
Methodology and Implementation

Olivier Sobrie
University of Mons
Polytechnic Faculty

October 6, 2010
GIS are used in lot of application from land suitability problem to geomarketing

Since 90’s, works about GIS and MCDA

Not a lot of work based on ELECTRE methods

ELECTRE methods fit well for ordinal problems
ELECTRE TRI

Assignment problematic

- p categories
- n criteria

Major interests

- Judge an action independently from the others
- Reference values fixed: profiles
- Allow to consider more actions than other ELECTRE methods
Objectives

Main goal

Implement ELECTRE TRI in an Open Source GIS to facilitate the study of multicriteria spatial problems

Requirements

- Use GIS capabilities to represent the problem and the result
- User friendly
- Support for classic and Bouyssou-Marchant ELECTRE TRI models
Strategy of integration

Reference

Coupling strategy
- Malczewski (2006) reports only 10% of works using a strategy of full coupling of the MCDA method in the GIS
- Full coupling

Actions
- Vector layer
- Represented by spatial units on the map (Points, lines, polygons)
Construction of the decision map

Step 1: Construction of criterion maps

Step 2: Construction of an intermediate map

Step 3: ELECTRE TRI model

Step 4: Generation of the decision map
Step 1: Construction of criterion maps

Definition

A criterion map c_j is a set $\{(s, g_j(s)) : s \in S_j\}$ where S_j is a set of spatial units and g_j a criterion function associated to c_j and defined as:

$$g_j : S_j \rightarrow E$$

$$s \rightarrow g_j(s)$$

Built with the GIS map algebra
Step 2: Construction of an intermediate map

Definition

An intermediate map is a map where each spatial unit is associated to a vector of n evaluations relative to the n criteria of evaluation.

Built using GIS $union$ operation
Introduction Objectives Strategy of integration Implementation Next steps

Step 3: ELECTRE TRI module

Goal
Introduction of ELECTRE TRI parameters

Parameters
- Weights of criteria
- Reference profiles
- Profiles thresholds (indifference, preference, veto)
- Assignment procedure and cutting level

Inference module
From assignment of some spatial units made by the decision maker, determine the parameters of the ELECTRE TRI model
Step 4: Generation of decision map

Definition

A decision map M is a set $\{(u, \Gamma_\omega(u)) : u \in U, \omega \in \Omega\}$, where U is a set of homogeneous spatial unities and Γ_ω is a multicriteria classification model defined as:

$$\Gamma_\omega : U \rightarrow E$$
$$u \rightarrow \Gamma_\omega[g_1(u), \ldots, g_m(u)]$$

<table>
<thead>
<tr>
<th>Obj.</th>
<th>Attributes</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td></td>
<td>12</td>
<td>1.3</td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td>32</td>
<td>1.3</td>
</tr>
<tr>
<td>c_3</td>
<td></td>
<td>32</td>
<td>2.4</td>
</tr>
<tr>
<td>c_4</td>
<td></td>
<td>21</td>
<td>2.4</td>
</tr>
<tr>
<td>c_5</td>
<td></td>
<td>21</td>
<td>3.0</td>
</tr>
<tr>
<td>c_6</td>
<td></td>
<td>54</td>
<td>3.0</td>
</tr>
<tr>
<td>c_7</td>
<td></td>
<td>54</td>
<td>2.6</td>
</tr>
<tr>
<td>c_8</td>
<td></td>
<td>12</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Intermediate map

Decision map

ELECTRE TRI

<table>
<thead>
<tr>
<th>Obj.</th>
<th>Cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>2</td>
</tr>
<tr>
<td>c_2</td>
<td>3</td>
</tr>
<tr>
<td>c_3</td>
<td>1</td>
</tr>
<tr>
<td>c_4</td>
<td>1</td>
</tr>
<tr>
<td>c_5</td>
<td>2</td>
</tr>
<tr>
<td>c_6</td>
<td>3</td>
</tr>
<tr>
<td>c_7</td>
<td>2</td>
</tr>
<tr>
<td>c_8</td>
<td>1</td>
</tr>
</tbody>
</table>
Choice of the GIS

- Lot of Open Source GIS (Grass, PostGIS, Quantum GIS, ...)
- See http://opensourcegis.org/ for complete list
Choice of the GIS

- Lot of Open Source GIS (Grass, PostGIS, Quantum GIS, ...)
- See http://opensourcegis.org/ for complete list

And the winner is:

- Linux and Windows compatible
- Written in C++ and Python
- Plugin mechanism included
- Using QT library
- Map algebra included
Quantum GIS - User interface

QT library

- Owned by Nokia
- LGPL license
- Available on a lot of platforms (Linux, Windows, ...)
- QT bindings for a lot of language (C++, python, java, ...)
- Lot of GUI possibilities
- QT Designer for user interface design
Quantum GIS - Generation of a decision map

Step 1: Criteria map
- Quantum GIS includes lot of tools to construct different criteria map (fTools package includes map algebra)
- Vector layers only

Step 2: Intermediate map
- *Union* tool included in Quantum GIS fTools package

Step 3: ELECTRE TRI module
- Implemented as a plugin for Quantum GIS

Step 4: Decision map
- Generated by the ELECTRE TRI module
- Use of Quantum GIS rendering capabilities
Quantum GIS - ELECTRE TRI module

Main components
- ELECTRE TRI class
- User interface
- Decision map generator

Technical details
- Programming language: Python
- User interface: PyQT
- Version Control System: git
- Project hosted on: github (http://github.com/oso/qgis-etri)
Introduction

Objectives

Strategy of integration

Implementation

Next steps

Quantum GIS - ELECTRE TRI module

User interface conception

1

2

pyuic4 to generate python code
Quantum GIS - ELECTRE TRI module

Full coupling

![Quantum GIS interface showing the ELECTRE TRI module plugin manager and the map view. The ELECTRE TRI logo is highlighted in a circle.]
Quantum GIS - ELECTRE TRI module

Now it’s time for a demo...
Demonstration 1 - Burkina Faso

Goal
Evaluation of landscape degradation in the watershed of Loulouka (Metchebon 2010)

Actions
229 squares of 25ha

Criteria
- 11 criteria
- Ordinal scale:
 1. Inadequate
 2. Weakly adequate
 3. Adequate

Categories
1. Inadequate
2. Weakly adequate
3. Moderately adequate
4. Adequate
Goal
Choose the best location for the installation of a waste treatment plant in the valley of Ticino (Maystre and al. 1994)

Actions
7 actions (points)

Criteria
- 5 criteria
- Quantitative and qualitative scales

Categories
1. Bad
2. Good
3. Very good
Next steps

Inference module
- Conception of the UI for the inference module
- Integration with a solver and XMCDA web services

Improve User Interface
- Simplify some actions
- Better error handling

Add features
- Draw profiles
- ...

Thank you for your attention!