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GIS and MCDA

GIS OrganizationVisualization

Spatial QueryCombination

AnalysisPrediction

I GIS are used in lot of application from land suitability problem
to geomarketing

I Since 90’s, works about GIS and MCDA
I Not a lot of work based on ELECTRE methods
I ELECTRE methods fit well for ordinal problems
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GIS and MCDA

Limitations of GIS-MCDA works according to S. Chakhar :
I Weak coupling
I One MCDA method integrated
I Choice of the MCDA method
I Single criterion synthesis
I User’s knowledge of SIG and MCDA

We add an extra one :
A good number of GIS-MCDA tools were abandoned or never
surpassed the stage of prototype
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Objectives of our GIS-MCDA integration

I ELECTRE TRI implementation
I Tight coupling
I User friendly interface
I Open Source GIS (and implementation)
I Support for standard and Bouyssou-Marchant methodology
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Strategy to build the decision map

Criterion map 1 Criterion map 2 Criterion map 3

Multicriteria map

ELECTRE TRI
module

Inference
module

Decision map

Step 1: Construction of criterion maps

Step 2: Construction of an intermediate map

Step 3: ELECTRE TRI model

Step 4: Generation of the decision map
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Status at the previous workshop
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Demo : Densification of Quebec city

Subject
Quebec city wants to create a program to densify its population in
the centrum and around the small crown. The program consists to
build rental properties at low prices for young families in empty
areas.

Objectives
I Densify central sectors where the there are more public

transports
I Sustain a good social diversity by choosing in priority the

sectors where young people and immigrants are not well
represented

I Favor sectors with a lot of small shops
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Demo : Densification of Quebec city

Actions
786 actions (polygons)

Criteria
I Density of 0-14 years old [%] (min)
I Density of shops [shops/ha] (max)
I Density of people [residents/ha] (min)
I Level of public transports (average) [bus/hour] (max)
I Ratio of immigrants [%] (min)

Categories
1. Bad
2. Medium
3. Good
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Objectives update

Save/Load parameters

Add the possibility to save an XMCDA model and restore it in the
plugin

XMCDA webservice for parameters inference
I Create a new webservice to infer parameters of the ELECTRE

TRI model globaly and partialy
I Make some experiments

Coupling the webservice with our ELECTRE TRI plugin
Create user-friendly interface to use the webservice with our
Quantum GIS plugin
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Save/Load parameters
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ELECTRE TRI BM inference webservice

XMCDA
webservice

Learning alternatives

Criteria

Performance table

Categories

Affectations

Categories profiles

Performance table of profiles

Criteria weights

Credibility threshold

Compatible alternatives

Message

Characteristics
I Bouyssou-Marchant ELECTRE TRI model
I Accept non-admissible set of learning alternatives
I Maximize number of compatible alternatives
I MIP problem
I Use GLPK
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ELECTRE TRI BM inference experimentations
Methodology

Similar methodology as the one used by Agnès Leroy in her thesis

Step 1 : Generate random data

Ck Ck+1

g1

g2

gj

gn−1

gn

Set of random
alternatives

Random ELECTRE TRI
model

Sorted alternatives

Ck

Ck+1

Step 2 : Pick learning alternatives
Set of random
alternatives

Learning set
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ELECTRE TRI BM inference experimentations
Methodology

Step 3 : Inference of ELECTRE TRI model

Ck Ck+1

Inference
Program
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Set of learn-
ing alternatives

Learned ELECTRE TRI
model

Step 4 : Analysis of learning model
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ELECTRE TRI BM inference experimentations
Results - Affectation errors
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Remarks

I Number of criteria ↗ ⇒ Affectation error ↗
I Number of categories ↗ ⇒ Affectation error ↗
I Number of learning alt. ↗ ⇒ Affectation error ↘
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ELECTRE TRI BM inference experimentations
Results - Computing time
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Remarks

I Number of criteria ↗ ⇒ Computing time ↗
I Number of categories ↗ ⇒ Computing time ↗
I Number of learning alt. ↗ ⇒ Computing time ↗ ↗
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ELECTRE TRI BM inference experimentations
Results - Influence of errors in learning set
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Remarks

I Number of erroned learn. alt. ↗ ⇒ Affectation errors ↗
I Number of learning alt. ↗ ⇒ Affectation errors ↘
I Number of learning alt. ↗ ⇒ Err. learn. alt. rej. ↗
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ELECTRE TRI BM inference experimentations
First conclusions and ideas for improvement

First conclusions
I Lot of learning alternatives needed to get good results
I With errors in the learning set, more alternatives are needed
I Computing become huge when number of learning alternatives

increase

Ideas for improvement
I Two step inference
I Improve objective of the inference program
I Partial inference
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ELECTRE TRI BM inference experimentations
Partial inference of the parameters - Profiles
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Remarks
I Less alternatives needed to get good results
I Less computing time needed than for global inference
I Generaly better than global inference for the same number of

learning alternatives
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ELECTRE TRI BM inference experimentations
Partial inference of the parameters - Weights and credibility threshold
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Remarks
I Less alternatives needed to get good results
I Less computing time needed than for global inference
I Generaly better than profiles inference for the same number of

learning alternatives
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ELECTRE TRI BM inference webservice update

XMCDA
webservice

Learning alternatives

Criteria

Performances table

Categories

Affectations

Categories profiles

Performance table of profiles

Criteria weights

Credibility threshold

(a)

(b)

Categories profiles

Performance table of profiles

Criteria weights

Credibility threshold

Compatible alternatives

Message

Characteristics
I Two entries added to do partial inference of the weights and

lambda threshold
I Two entries added to do partial inference of the profiles
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Coupling of XMCDA webservice with Quantum GIS
ELECTRE TRI plugin

Main functionnal-
ities of the GIS

ELECTRE TRI
plugin

Quantum GIS

XMCDA
webservice

Solver

XMCDA
files

SOAP messages
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It’s time for a demo...
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Original model
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Actions of reference
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Global inference
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Global inference (difference)

± 29% of invalid affectations
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Profiles inference
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Profiles inference (difference)

± 33% of invalid affectations
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Weights and lambda inference
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Weights and lambda inference (difference)

± 6% of invalid affectations
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Next developments and ideas...

Plugin improvement
I Add plot of the profiles
I Add the possibility to choose a spatial entity by clicking on it

in the inference module

Coupling with IRIS webservice
Be able to perform ELECTRE TRI inference with the IRIS
webservice

Smart selection of spatial entities for inference
Add a button to select by default an optimal set of spatial entities
to use as learning alternatives with the inference program
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To discuss...

Webservice compatibility
Currently it is not possible to connect the inference webservice with
the ELECTRE TRI one

Replacement of GLPK by SCIP

Inclusion of XMCDA functions in PyXMCDA
I Some generic functions included in the Quantum GIS

ELECTRE TRI plugin might be integrated in the PyXMCDA
library

I lxml module ?
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Thank you for your
attention !
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