ELECTRE TRI plug-in in Quantum GIS and ElectreTriBM webservice What's new?

Olivier Sobrie

University of Mons Faculty of engineering

October 17, 2011

UMONS

Quantum GIS ELECTRE TRI plug-in

Representation of the ELECTRE TRI model inside the plug-in

Demo

Representation of the ELECTRE TRI model inside the plug-in

- Demo
- Good colors to represent the model?

Representation of the ELECTRE TRI model inside the plug-in

- Demo
- ▶ Good colors to represent the model? \rightarrow No!

Solution

► ELECTRE TRI plug-in will be adapted as soon as possible

New python SOAP library

Problem with ZSI:

- ▶ Difficult to install it on Windows
- Unmaintained

New python SOAP library

Problem with ZSI:

- Difficult to install it on Windows
- Unmaintained

Solution: pysimplesoap

- Available at http://code.google.com/p/pysimplesoap
- ► Easy to embbed in a python application

New python SOAP library

Problem with ZSI:

- Difficult to install it on Windows
- Unmaintained

Solution: pysimplesoap

- Available at http://code.google.com/p/pysimplesoap
- Easy to embbed in a python application

Thus...

- Update of the Quantum GIS ELECTRE TRI plug-in
- Update of the sample code provided in Decision Deck repository

Improve modularity of the plug-in

Old implementation

▶ 3 big blocks

Improve modularity of the plug-in

Old implementation

- ▶ 3 big blocks
- ► Split of the 3 blocks
- Cleaner code
- ▶ Re-use of the code
- Ongoing...

New implementation

MCDA library

Goals:

- ► Have basic objects of MCDA (criterion, alternative, ...)
- Include methods to convert objects into XMCDA

Criteria	Alternatives	Categories
list of criteria	list of alternatives	list of categories
to_xmcda()	to_xmcda()	to_xmcda()
from_xmcda()	from_xmcda()	from_xmcda()
Criterion	Alternative	Category
id	id	id
name	name	name
disabled	disabled	disabled
weight	performances	lower_prof
to_xmcda()	to_xmcda()	upper_prof
from_xmcda()	from_xmcda()	to_xmcda()
		from_xmcda()

Still in progress...

XMCDA questions

Two possibilities to define criterion weight

Within criterion Value tag

```
<criteria>
  <criterion id="prix" name="prix">
    <active>true</active>
   <scale>
      <quantitative>
        cpreferenceDirection>
        </preferenceDirection>
      </guantitative>
    </scale>
  </criterion>
</criteria>
<criteria Values>
  <criterion Value>
    <criterionID>0</criterionID>
    <value>< real>25.0/ real>/
  </criterionValue>
```

Within criterion tag

```
<criteria>
  <criterion id="prix" name="prix">
    <active>true</active>
    <scale>
      <quantitative>
        cpreferenceDirection>
        </preferenceDirection>
      </grantitative>
    </scale>
    <criterion Value>
      <value>
        <integer>25</integer>
      </value>
    </criterionValue>
  </criterion>
</criteria>
```

</criteriaValues>

XMCDA questions

Not the same for the alternative performances... why?

Within alternativePerformances tag: OK

```
<alternatives>
  <alternative id="b1">
    <active>true</active>
  </alternative>
<alternatives>
<performanceTable>
  <alternativePerformances>
    <alternativeID>a1</alternativeID>
    <performance>
      <criterionID>0</criterionID>
      <value><real>100.0</real></value>
    </performance>
    <performance>
      <criterionID>1</criterionID>
      <value><real>1000.0</real></value>
    </performance>
  </alternativePerformances>
```

Within alternative tag: NOK

</performanceTable>

XMCDA questions

ELECTRE TRI model with indifference preference and veto thresholds differents for each profile

Encoding in XMCDA...

```
<criterion id="0">
 <scale>
   <quantitative>
     <preferenceDirection>min</preferenceDirection>
   </quantitative>
 </scale>
 <thresholds>
   <threshold id="q1" name="indifference" mcdaConcept="indifference">
     <constant><real>15.000000</real></constant>
   </threshold>
   <threshold id="a2" name="indifference" mcdaConcept="indifference">
     <constant><real>15.000000</real></constant>
   </threshold>
   <threshold id="p1" name="preference" mcdaConcept="preference">
     <constant><real>40.000000</real></constant>
   </threshold>
   <threshold id="p2" name="preference" mcdaConcept="preference">
     <constant><real>40.000000</real></constant>
   </threshold>
 <thresholds>
</criterion>
```

Re-use of some blocks

Demonstration

EtriBMInference webservice

GLPK solver

Issue = performance

Computing time for a model with 2 categories

SCIP

Solver overview

(source: http://http://scip.zio.ae)

- ► CPLEX is the best one... but is not free
- SCIP is the fastest non-commercial MIP solver

SCIP

Solver overview

(source: http://http://scip.zib.de)

- ► CPLEX is the best one... but is not free
- SCIP is the fastest non-commercial MIP solver

Conditions to use SCIP in our webservices

- ▶ SCIP is only used binary in a webservice, i.e. it is not distribuited.
- ► The webservice is free of charge
- There is a notification that SCIP is used and a link to SCIP website.

Conclusion

Conclusion

Lot of things to do:

- ► Change colors of decision map in the ELECTRE TRI plug-in
- ► Finish code refactoring of ELECTRE TRI plug-in
- Complete MCDA library in python
- ► Change solver of the webservice
- **...**

Conclusion

Lot of things to do:

- Change colors of decision map in the ELECTRE TRI plug-in
- ► Finish code refactoring of ELECTRE TRI plug-in
- Complete MCDA library in python
- Change solver of the webservice
- **.**..

Questions/Remarks?

