# Learning the parameters of a multiple criteria sorting method from large sets of assignment examples

Olivier Sobrie<sup>1,2</sup> - Vincent Mousseau<sup>1</sup> - Marc Pirlot<sup>2</sup>

<sup>1</sup>École Centrale de Paris - Laboratoire de Génie Industriel <sup>2</sup>University of Mons - Faculty of engineering

July 2, 2013





- 1 Introduction
- 2 Algorithm
- 3 Experimentations
- **4** Conclusion

## Introductory example

#### Application: Lung cancer





#### Categories:

C<sub>3</sub>: No cancer

 $C_2$ : Curable cancer

 $C_1$ : Incurable cancer

 $C_3 \succ C_2 \succ C_1$ 

- 9394 patients analyzed
- ► Monotone attributes (number of cigarettes per day, age, ...)
- Output variable : no cancer, cancer, incurable cancer
- Predict the risk to get a lung cancer for other patients on basis of their attributes

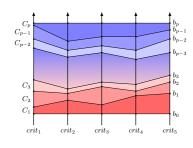


## MR-Sort procedure

#### Main characteristics

- Sorting procedure
- ► Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- ► Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

#### **Parameters**



- ▶ Profiles' performances  $(b_{h,j})$  for h = 1, ..., p 1; j = 1, ..., n
- ► Criteria weights ( $w_j$  for n = 1, ..., n)
- ▶ Majority threshold  $(\lambda)$

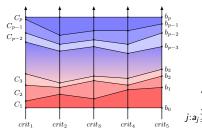


## MR-Sort procedure

#### Main characteristics

- Sorting procedure
- Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- ► Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

#### **Parameters**



#### Assignment rule

$$a \in \mathcal{C}_h \ \Leftrightarrow \ \sum_{j: a_j \geq b_{h-1,j}} w_j \geq \lambda \ ext{and} \ \sum_{j: a_j \geq b_{h,j}} w_j < \lambda$$

## Inferring the parameters

#### What already exists to infer MR-Sort parameters?

- Mixed Integer Program learning the parameters of an MR-Sort model [Leroy et al., 2011]
- ▶ Metaheuristic to learn the parameters of an ELECTRE TRI model [Doumpos et al., 2009]
- ▶ Not suitable for large problems : computing time becomes huge when the number of parameters or examples increases

#### Our objective

- ▶ Learn a MR-Sort model from a large set of assignment examples
- Efficient algorithm (i.e. can handle 1000 alternatives, 10 criteria, 5 categories)



## Principe of the metaheuristic

#### Input parameters

- Assignment examples
- ▶ Performances of the examples on the *n* criteria

## **Objective**

▶ Learn an MR-Sort model which is compatible with the highest number of assignment examples, i.e. maximize the classification accuracy,

$$\textit{CA} = \frac{\text{Number of examples correctly restored}}{\text{Total number of examples}}$$

#### **Difficulty**

► Learn all the parameters of an MR-Sort model at the same time

## Metaheuristic to learn all the parameters

#### **Algorithm**

Generate a population of  $N_{model}$  models with profiles initialized with a heuristic

#### repeat

for all model M of the set do

Learn the weights and majority threshold with a linear program, using the current profiles

Adjust the profiles with a heuristic  $N_{it}$  times, using the current weights and threshold.

#### end for

Reinitialize the  $\left\lfloor \frac{N_{model}}{2} \right\rfloor$  models giving the worst *CA* until Stopping criterion is met

#### Stopping criterion

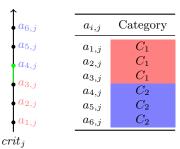
Stopping criterion is met when one model has a CA equal to 1 or when the algorithm has run  $N_o$  times.

#### Profiles initialization

#### **Principe**

- By a heuristic
- ▶ On each criterion j, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if  $w_j=1$ .
- ▶ Take the probability to belong to a category into account

#### Example 1 : Where should the profile be set on criterion j?



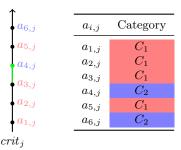
| Category        | $P(a_i \in C_h)$                  |  |  |
|-----------------|-----------------------------------|--|--|
| $C_1 \\ C_2$    | $\frac{\frac{1}{2}}{\frac{1}{2}}$ |  |  |
| $C_2 \succ C_1$ |                                   |  |  |
| $a_{3,j} <$     | $b_h \le a_{4,j}$                 |  |  |

#### Profiles initialization

#### **Principe**

- By a heuristic
- ▶ On each criterion j, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if  $w_j=1$ .
- ▶ Take the probability to belong to a category into account

#### Example 2 : Where should the profile be set on criterion j?



| Category        | $P(a_i \in C_h)$            |  |  |
|-----------------|-----------------------------|--|--|
| $C_1$ $C_2$     | $\frac{2}{3}$ $\frac{1}{3}$ |  |  |
| $C_2 \succ C_1$ |                             |  |  |
| $a_{3,j} <$     | $b_h \le a_{4,j}$           |  |  |

# Learning the weights and the majority threshold

#### **Principe**

- Maximizing the classification accuracy of the model
- Using a linear program with no binary variables

#### Linear program

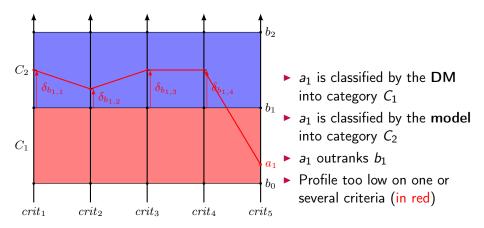
Objective: 
$$\min \sum_{a_i \in A} (x'_i + y'_i)$$
 (1)

$$\sum_{\forall j | a_i S_j b_{h-1}} w_j - x_i + x_i' = \lambda \qquad \forall a_i \in A_h, h = \{2, ..., p-1\} \qquad (2)$$

$$\sum_{\forall i \mid a_i, S_i b_h} w_j + y_i - y_i' = \lambda - \delta \qquad \forall a_i \in A_h, h = \{1, ..., p - 2\}$$
 (3)

$$\sum_{i=1}^{n} w_i = 1 \tag{4}$$

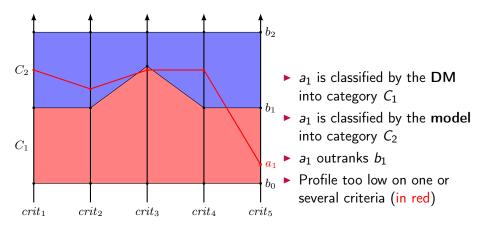
## Case 1 : Alternative $a_1$ classified in $C_2$ instead of $C_1$ ( $C_2 \succ C_1$ )



$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$



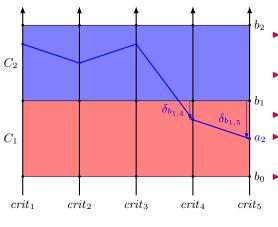
## Case 1 : Alternative $a_1$ classified in $C_2$ instead of $C_1$ ( $C_2 \succ C_1$ )



$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$



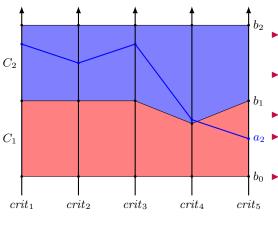
#### Case 2 : Alternative $a_2$ classified in $C_1$ instead of $C_2$ ( $C_2 \succ C_1$ )



$$w_j = 0.2 \text{ for } j = 1, ..., 5; \ \lambda = 0.8$$

- ► a₂ is classified by the DM into category  $C_2$
- ▶ a₂ is classified by the model into category  $C_1$
- ▶ a<sub>2</sub> doesn't outrank b<sub>1</sub>
- Profile too high on one or several criteria (in blue)
- $b_0$  If profile moved by  $\delta_{b_1,2,4}$  on  $g_4$  and/or by  $\delta_{b_1,2,5}$  on  $g_5$ , the alternative will be rightly classified

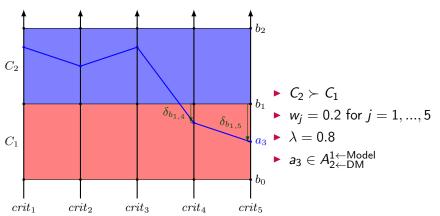
#### Case 2 : Alternative $a_2$ classified in $C_1$ instead of $C_2$ ( $C_2 \succ C_1$ )



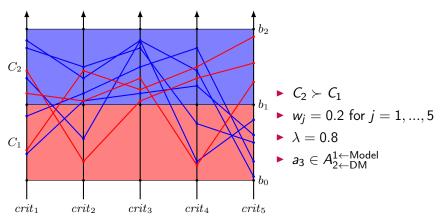
$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

- ► a₂ is classified by the DM into category  $C_2$
- a<sub>2</sub> is classified by the model into category  $C_1$
- ▶ a₂ doesn't outrank b₁
- Profile too high on one or several criteria (in blue)
- $b_0$  If profile moved by  $\delta_{b_1,2,4}$  on  $g_4$  and/or by  $\delta_{b_1,2,5}$  on  $g_5$ , the alternative will be rightly classified

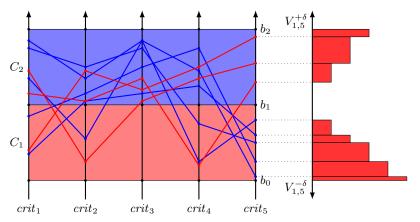
 $ightharpoonup V_{hi}^{+\delta}$  (resp.  $V_{hi}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$ instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  by  $+\delta$  (resp.  $-\delta$ ) on j results in a correct assignment.



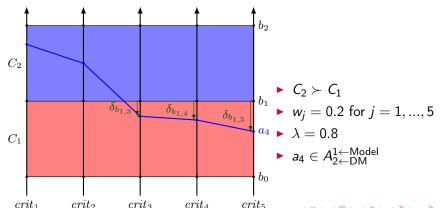
 $V_{h,i}^{+\delta}$  (resp.  $V_{h,i}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$ instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  by  $+\delta$  (resp.  $-\delta$ ) on j results in a correct assignment.



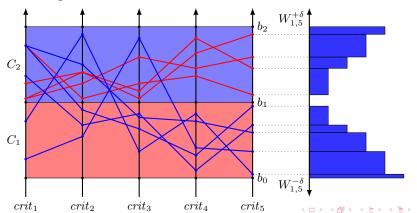
 $V_{h,i}^{+\delta}$  (resp.  $V_{h,i}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$ instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  by  $+\delta$  (resp.  $-\delta$ ) on j results in a correct assignment.



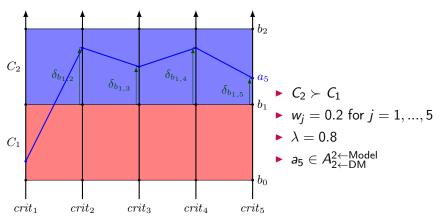
 $V_{h,i}^{+\delta}$  (resp.  $W_{h,i}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$ instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.



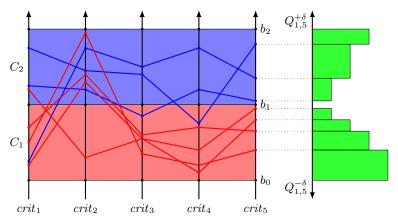
 $V_{h,i}^{+\delta}$  (resp.  $W_{h,i}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$ instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.



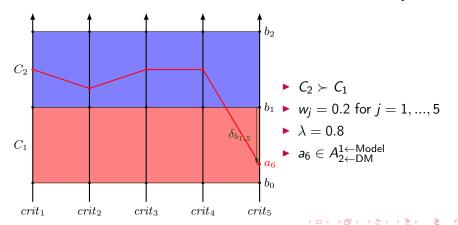
 $ightharpoonup Q_{h,i}^{+\delta}$  (resp.  $Q_{h,i}^{-\delta}$ ): the sets of alternatives correctly classified in  $C_{h+1}$ (resp.  $C_{h+1}$ ) for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on jresults in a misclassification.



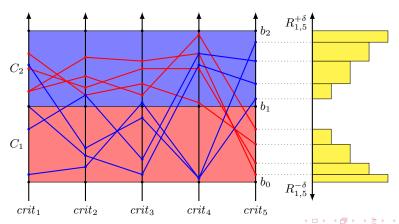
 $ightharpoonup Q_{h,i}^{+\delta}$  (resp.  $Q_{h,i}^{-\delta}$ ): the sets of alternatives correctly classified in  $C_{h+1}$ (resp.  $C_{h+1}$ ) for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on jresults in a misclassification.



 $ightharpoonup R_{h,i}^{+\delta}$  (resp.  $R_{h,i}^{-\delta}$ ): the sets of alternatives misclassified in  $C_{h+1}$  instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.

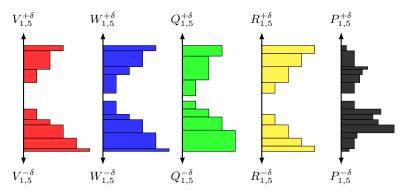


 $ightharpoonup R_{h,i}^{+\delta}$  (resp.  $R_{h,i}^{-\delta}$ ) : the sets of alternatives misclassified in  $C_{h+1}$  instead of  $C_h$  (resp.  $C_h$  instead of  $C_{h+1}$ ), for which moving the profile  $b_h$  of  $+\delta$  (resp.  $-\delta$ ) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.



$$P(b_{1,j}^{+\delta}) = \frac{k_V |V_{1,j}^{+\delta}| + k_W |W_{1,j}^{+\delta}| + k_T |T_{1,j}^{+\delta}|}{d_V |V_{1,j}^{+\delta}| + d_W |W_{1,j}^{+\delta}| + d_T |T_{1,j}^{+\delta}| + d_Q |Q_{1,j}^{+\delta}| + d_R |R_{1,j}^{+\delta}|}$$

with:  $k_V = 2$ ,  $k_W = 1$ ,  $k_T = 0.1$ ,  $d_V = d_W = d_T = 1$ ,  $d_Q = 5$ ,  $d_R = 1$ 



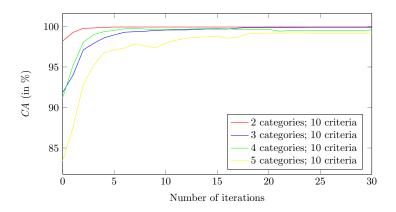
## Overview of the complete algorithm

```
for all profile b_h do
  for all criterion j chosen randomly do
     Choose, in a randomized manner, a set of positions in the
     interval [b_{h-1,i}, b_{h+1,i}]
     Select the one such that P(b_{h,i}^{\Delta}) is maximal
     Draw uniformly a random number r from the interval [0, 1].
    if r \leq P(b_{h,i}^{\Delta}) then
       Move b_{h,j} to the position corresponding to b_{h,j} + \Delta
       Update the alternatives assignment
     end if
  end for
end for
```

# **Experimentations**

- 1. What's the efficiency of the algorithm?
- 2. How much alternatives are required to learn a good model?
- 3. What's the capability of the algorithm to restore assignments when there are errors in the examples?
- 4. How the algorithm behaves on real datasets?

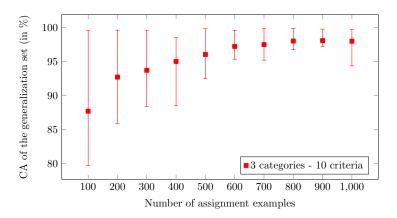
## Algorithm efficiency



- Random model M generated
- Learning set: random alternatives assigned through the model M
- Model M' learned with the metaheuristic from the learning set

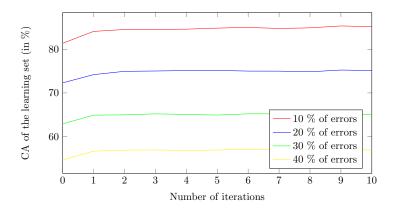


## Model retrieval



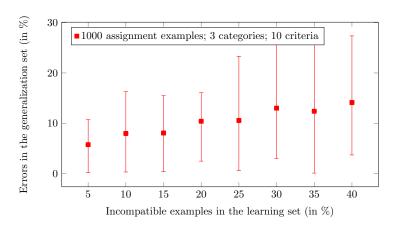
- Random model M generated
- Learning set: random alternatives assigned through model M
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M'

#### **Tolerance for errors**



- ► Random model *M* generated
- $\blacktriangleright$  Learning set : random alternatives assigned through model M + errors
- ▶ Model M' learned with the metaheuristic from the learning set

## **Tolerance for errors**



- Random model M generated
- Learning set: random alternatives assigned through model M + errors
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M

## Application on real datasets

| Dataset | #instances | #attributes | #categories |
|---------|------------|-------------|-------------|
| DBS     | 120        | 8           | 2           |
| CPU     | 209        | 6           | 4           |
| BCC     | 286        | 7           | 2           |
| MPG     | 392        | 7           | 36          |
| ESL     | 488        | 4           | 9           |
| MMG     | 961        | 5           | 2           |
| ERA     | 1000       | 4           | 4           |
| LEV     | 1000       | 4           | 5           |
| CEV     | 1728       | 6           | 4           |

- ▶ Instances split in two parts : learning and generalization sets
- Binarization of the categories

Source: [Tehrani et al., 2012]



## Application on real datasets - Binarized categories

| Learning set | Dataset | MIP MR-SORT         | META MR-SORT        | LP UTADIS           |
|--------------|---------|---------------------|---------------------|---------------------|
| 20 %         | DBS     | $0.8023 \pm 0.0481$ | $0.8012 \pm 0.0469$ | $0.7992 \pm 0.0533$ |
|              | CPU     | $0.9100 \pm 0.0345$ | $0.8960 \pm 0.0433$ | $0.9348 \pm 0.0362$ |
|              | BCC     | $0.7322 \pm 0.0276$ | $0.7196 \pm 0.0302$ | $0.7085 \pm 0.0307$ |
|              | MPG     | $0.7920 \pm 0.0326$ | $0.7855 \pm 0.0383$ | $0.7775 \pm 0.0318$ |
|              | ESL     | $0.8925 \pm 0.0158$ | $0.8932 \pm 0.0159$ | $0.9111 \pm 0.0160$ |
|              | MMG     | $0.8284 \pm 0.0140$ | $0.8235 \pm 0.0135$ | $0.8160 \pm 0.0184$ |
|              | ERA     | $0.7907 \pm 0.0174$ | $0.7915 \pm 0.0146$ | $0.7632 \pm 0.0187$ |
|              | LEV     | $0.8386 \pm 0.0151$ | $0.8327 \pm 0.0221$ | $0.8346 \pm 0.0160$ |
|              | CEV     | -                   | $0.9214 \pm 0.0045$ | $0.9206 \pm 0.0059$ |
|              | DBS     | $0.8373 \pm 0.0426$ | $0.8398 \pm 0.0487$ | $0.8520 \pm 0.0421$ |
|              | CPU     | $0.9360 \pm 0.0239$ | $0.9269 \pm 0.0311$ | $0.9770 \pm 0.0238$ |
|              | BCC     | -                   | $0.7246 \pm 0.0446$ | $0.7146 \pm 0.0246$ |
|              | MPG     | -                   | $0.8170 \pm 0.0295$ | $0.7910 \pm 0.0236$ |
| 50 %         | ESL     | $0.8982 \pm 0.0155$ | $0.8982 \pm 0.0203$ | $0.9217 \pm 0.0163$ |
|              | MMG     | -                   | $0.8290 \pm 0.0153$ | $0.8242 \pm 0.0152$ |
|              | ERA     | $0.8042 \pm 0.0137$ | $0.7951 \pm 0.0191$ | $0.7658 \pm 0.0171$ |
|              | LEV     | $0.8554 \pm 0.0151$ | $0.8460 \pm 0.0221$ | $0.8444 \pm 0.0132$ |
|              | CEV     | -                   | $0.9216 \pm 0.0067$ | $0.9201 \pm 0.0091$ |
| 80 %         | DBS     | $0.8520 \pm 0.0811$ | $0.8712 \pm 0.0692$ | $0.8720 \pm 0.0501$ |
|              | CPU     | $0.9402 \pm 0.0315$ | $0.9476 \pm 0.0363$ | $0.9848 \pm 0.0214$ |
|              | BCC     | -                   | $0.7486 \pm 0.0640$ | $0.7087 \pm 0.0510$ |
|              | MPG     | -                   | $0.8152 \pm 0.0540$ | $0.7920 \pm 0.0388$ |
|              | ESL     | $0.8992 \pm 0.0247$ | $0.9017 \pm 0.0276$ | $0.9256 \pm 0.0235$ |
|              | MMG     | -                   | $0.8313 \pm 0.0271$ | $0.8266 \pm 0.0265$ |
|              | ERA     | $0.8144 \pm 0.0260$ | $0.7970 \pm 0.0272$ | $0.7644 \pm 0.0292$ |
|              | LEV     | $0.8628 \pm 0.0232$ | $0.8401 \pm 0.0321$ | $0.8428 \pm 0.0222$ |
|              | CEV     | -                   | $0.9204 \pm 0.0130$ | $0.9201 \pm 0.0132$ |

University of Mons - Ecole Centrale Paris

## Application on real datasets

|      | Dataset    | MIP MR-SORT           | META MR-SORT                                                          | LP UTADIS                                                             |
|------|------------|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 20 % | CPU<br>ERA | $0.7542 \pm 0.0506$ - | $0.7443 \pm 0.0559$<br>$0.5104 \pm 0.0198$                            | $0.8679 \pm 0.0488$<br>$0.4856 \pm 0.0169$                            |
|      | LEV<br>CEV | -                     | $\begin{array}{c} 0.5528 \pm 0.0274 \\ 0.7761 \pm 0.0183 \end{array}$ | $\begin{array}{c} 0.5775 \pm 0.0175 \\ 0.7719 \pm 0.0153 \end{array}$ |
| 50 % | CPU<br>ERA | -                     | $\begin{array}{c} 0.8052 \pm 0.0361 \\ 0.5216 \pm 0.0180 \end{array}$ | $\begin{array}{c} 0.9340 \pm 0.0266 \\ 0.4833 \pm 0.0171 \end{array}$ |
|      | LEV<br>CEV | -                     | $\begin{array}{c} 0.5751 \pm 0.0230 \\ 0.7833 \pm 0.0180 \end{array}$ | $\begin{array}{c} 0.5889 \pm 0.0158 \\ 0.7714 \pm 0.0158 \end{array}$ |
| 80 % | CPU<br>ERA | -                     | $\begin{array}{c} 0.8055 \pm 0.0560 \\ 0.5230 \pm 0.0335 \end{array}$ | $\begin{array}{c} 0.9512 \pm 0.0351 \\ 0.4824 \pm 0.0332 \end{array}$ |
|      | LEV<br>CEV | -                     | $\begin{array}{c} 0.5750 \pm 0.0344 \\ 0.7895 \pm 0.0203 \end{array}$ | $\begin{array}{c} 0.5933 \pm 0.0305 \\ 0.7717 \pm 0.0259 \end{array}$ |

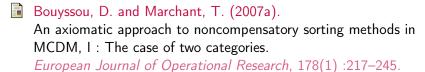
#### Conclusions and further research

- Algorithm able to handle large datasets
- Adapted to the structure of the problem

- Comparison of AVF-Sort and MR-Sort
- Use MR-Sort models with vetoes
- Test the algorithm on other datasets



## References I



- Bouyssou, D. and Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories. European Journal of Operational Research, 178(1):246–276.
- Doumpos, M., Marinakis, Y., Marinaki, M., and Zopounidis, C. (2009).

An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2):496–505.

## References II



Leroy, A., Mousseau, V., and Pirlot, M. (2011). Learning the parameters of a multiple criteria sorting method. In Brafman, R., Roberts, F., and Tsoukiàs, A., editors, *Algorithmic* Decision Theory, volume 6992 of Lecture Notes in Computer Science, pages 219-233. Springer Berlin / Heidelberg.



Slowinski, R., Greco, S., and Matarazzo, B. (2002).

Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle.

Control and Cybernetics, 31(4):1005-1035.



Tehrani, A. F., Cheng, W., Dembczynski, K., and Hüllermeier, E. (2012).

Learning monotone nonlinear models using the choquet integral. Machine Learning, 89(1-2):183-211.

## References III



Yu, W. (1992).

Aide multicritère à la décision dans le cadre de la problématique du tri : méthodes et applications.

PhD thesis, LAMSADE, Université Paris Dauphine, Paris.