Learning the parameters of a multiple criteria sorting method from large sets of assignment examples

Olivier Sobrie^{1,2} - Vincent Mousseau¹ - Marc Pirlot²

¹École Centrale de Paris - Laboratoire de Génie Industriel ²University of Mons - Faculty of engineering

July 2, 2013

- 1 Introduction
- 2 Algorithm
- 3 Experimentations
- **4** Conclusion

Introductory example

Application: Lung cancer

Categories:

C₃: No cancer

 C_2 : Curable cancer

 C_1 : Incurable cancer

 $C_3 \succ C_2 \succ C_1$

- 9394 patients analyzed
- ► Monotone attributes (number of cigarettes per day, age, ...)
- Output variable : no cancer, cancer, incurable cancer
- Predict the risk to get a lung cancer for other patients on basis of their attributes

MR-Sort procedure

Main characteristics

- Sorting procedure
- ► Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- ► Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

Parameters

- ▶ Profiles' performances $(b_{h,j})$ for h = 1, ..., p 1; j = 1, ..., n
- ► Criteria weights (w_j for n = 1, ..., n)
- ▶ Majority threshold (λ)

MR-Sort procedure

Main characteristics

- Sorting procedure
- Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- ► Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

Parameters

Assignment rule

$$a \in \mathcal{C}_h \ \Leftrightarrow \ \sum_{j: a_j \geq b_{h-1,j}} w_j \geq \lambda \ ext{and} \ \sum_{j: a_j \geq b_{h,j}} w_j < \lambda$$

Inferring the parameters

What already exists to infer MR-Sort parameters?

- Mixed Integer Program learning the parameters of an MR-Sort model [Leroy et al., 2011]
- ▶ Metaheuristic to learn the parameters of an ELECTRE TRI model [Doumpos et al., 2009]
- ▶ Not suitable for large problems : computing time becomes huge when the number of parameters or examples increases

Our objective

- ▶ Learn a MR-Sort model from a large set of assignment examples
- Efficient algorithm (i.e. can handle 1000 alternatives, 10 criteria, 5 categories)

Principe of the metaheuristic

Input parameters

- Assignment examples
- ▶ Performances of the examples on the *n* criteria

Objective

▶ Learn an MR-Sort model which is compatible with the highest number of assignment examples, i.e. maximize the classification accuracy,

$$\textit{CA} = \frac{\text{Number of examples correctly restored}}{\text{Total number of examples}}$$

Difficulty

► Learn all the parameters of an MR-Sort model at the same time

Metaheuristic to learn all the parameters

Algorithm

Generate a population of N_{model} models with profiles initialized with a heuristic

repeat

for all model M of the set do

Learn the weights and majority threshold with a linear program, using the current profiles

Adjust the profiles with a heuristic N_{it} times, using the current weights and threshold.

end for

Reinitialize the $\left\lfloor \frac{N_{model}}{2} \right\rfloor$ models giving the worst *CA* until Stopping criterion is met

Stopping criterion

Stopping criterion is met when one model has a CA equal to 1 or when the algorithm has run N_o times.

Profiles initialization

Principe

- By a heuristic
- ▶ On each criterion j, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if $w_j=1$.
- ▶ Take the probability to belong to a category into account

Example 1 : Where should the profile be set on criterion j?

Category	$P(a_i \in C_h)$		
$C_1 \\ C_2$	$\frac{\frac{1}{2}}{\frac{1}{2}}$		
$C_2 \succ C_1$			
$a_{3,j} <$	$b_h \le a_{4,j}$		

Profiles initialization

Principe

- By a heuristic
- ▶ On each criterion j, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if $w_j=1$.
- ▶ Take the probability to belong to a category into account

Example 2 : Where should the profile be set on criterion j?

Category	$P(a_i \in C_h)$		
C_1 C_2	$\frac{2}{3}$ $\frac{1}{3}$		
$C_2 \succ C_1$			
$a_{3,j} <$	$b_h \le a_{4,j}$		

Learning the weights and the majority threshold

Principe

- Maximizing the classification accuracy of the model
- Using a linear program with no binary variables

Linear program

Objective:
$$\min \sum_{a_i \in A} (x'_i + y'_i)$$
 (1)

$$\sum_{\forall j | a_i S_j b_{h-1}} w_j - x_i + x_i' = \lambda \qquad \forall a_i \in A_h, h = \{2, ..., p-1\} \qquad (2)$$

$$\sum_{\forall i \mid a_i, S_i b_h} w_j + y_i - y_i' = \lambda - \delta \qquad \forall a_i \in A_h, h = \{1, ..., p - 2\}$$
 (3)

$$\sum_{i=1}^{n} w_i = 1 \tag{4}$$

Case 1 : Alternative a_1 classified in C_2 instead of C_1 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

Case 1 : Alternative a_1 classified in C_2 instead of C_1 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

Case 2 : Alternative a_2 classified in C_1 instead of C_2 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \ \lambda = 0.8$$

- ► a₂ is classified by the DM into category C_2
- ▶ a₂ is classified by the model into category C_1
- ▶ a₂ doesn't outrank b₁
- Profile too high on one or several criteria (in blue)
- b_0 If profile moved by $\delta_{b_1,2,4}$ on g_4 and/or by $\delta_{b_1,2,5}$ on g_5 , the alternative will be rightly classified

Case 2 : Alternative a_2 classified in C_1 instead of C_2 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

- ► a₂ is classified by the DM into category C_2
- a₂ is classified by the model into category C_1
- ▶ a₂ doesn't outrank b₁
- Profile too high on one or several criteria (in blue)
- b_0 If profile moved by $\delta_{b_1,2,4}$ on g_4 and/or by $\delta_{b_1,2,5}$ on g_5 , the alternative will be rightly classified

 $ightharpoonup V_{hi}^{+\delta}$ (resp. $V_{hi}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

 $V_{h,i}^{+\delta}$ (resp. $V_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

 $V_{h,i}^{+\delta}$ (resp. $V_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

 $V_{h,i}^{+\delta}$ (resp. $W_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.

 $V_{h,i}^{+\delta}$ (resp. $W_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.

 $ightharpoonup Q_{h,i}^{+\delta}$ (resp. $Q_{h,i}^{-\delta}$): the sets of alternatives correctly classified in C_{h+1} (resp. C_{h+1}) for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on jresults in a misclassification.

 $ightharpoonup Q_{h,i}^{+\delta}$ (resp. $Q_{h,i}^{-\delta}$): the sets of alternatives correctly classified in C_{h+1} (resp. C_{h+1}) for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on jresults in a misclassification.

 $ightharpoonup R_{h,i}^{+\delta}$ (resp. $R_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.

 $ightharpoonup R_{h,i}^{+\delta}$ (resp. $R_{h,i}^{-\delta}$) : the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.

$$P(b_{1,j}^{+\delta}) = \frac{k_V |V_{1,j}^{+\delta}| + k_W |W_{1,j}^{+\delta}| + k_T |T_{1,j}^{+\delta}|}{d_V |V_{1,j}^{+\delta}| + d_W |W_{1,j}^{+\delta}| + d_T |T_{1,j}^{+\delta}| + d_Q |Q_{1,j}^{+\delta}| + d_R |R_{1,j}^{+\delta}|}$$

with: $k_V = 2$, $k_W = 1$, $k_T = 0.1$, $d_V = d_W = d_T = 1$, $d_Q = 5$, $d_R = 1$

Overview of the complete algorithm

```
for all profile b_h do
  for all criterion j chosen randomly do
     Choose, in a randomized manner, a set of positions in the
     interval [b_{h-1,i}, b_{h+1,i}]
     Select the one such that P(b_{h,i}^{\Delta}) is maximal
     Draw uniformly a random number r from the interval [0, 1].
    if r \leq P(b_{h,i}^{\Delta}) then
       Move b_{h,j} to the position corresponding to b_{h,j} + \Delta
       Update the alternatives assignment
     end if
  end for
end for
```

Experimentations

- 1. What's the efficiency of the algorithm?
- 2. How much alternatives are required to learn a good model?
- 3. What's the capability of the algorithm to restore assignments when there are errors in the examples?
- 4. How the algorithm behaves on real datasets?

Algorithm efficiency

- Random model M generated
- Learning set: random alternatives assigned through the model M
- Model M' learned with the metaheuristic from the learning set

Model retrieval

- Random model M generated
- Learning set: random alternatives assigned through model M
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M'

Tolerance for errors

- ► Random model *M* generated
- \blacktriangleright Learning set : random alternatives assigned through model M + errors
- ▶ Model M' learned with the metaheuristic from the learning set

Tolerance for errors

- Random model M generated
- Learning set: random alternatives assigned through model M + errors
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M

Application on real datasets

Dataset	#instances	#attributes	#categories
DBS	120	8	2
CPU	209	6	4
BCC	286	7	2
MPG	392	7	36
ESL	488	4	9
MMG	961	5	2
ERA	1000	4	4
LEV	1000	4	5
CEV	1728	6	4

- ▶ Instances split in two parts : learning and generalization sets
- Binarization of the categories

Source: [Tehrani et al., 2012]

Application on real datasets - Binarized categories

Learning set	Dataset	MIP MR-SORT	META MR-SORT	LP UTADIS
20 %	DBS	0.8023 ± 0.0481	0.8012 ± 0.0469	0.7992 ± 0.0533
	CPU	0.9100 ± 0.0345	0.8960 ± 0.0433	0.9348 ± 0.0362
	BCC	0.7322 ± 0.0276	0.7196 ± 0.0302	0.7085 ± 0.0307
	MPG	0.7920 ± 0.0326	0.7855 ± 0.0383	0.7775 ± 0.0318
	ESL	0.8925 ± 0.0158	0.8932 ± 0.0159	0.9111 ± 0.0160
	MMG	0.8284 ± 0.0140	0.8235 ± 0.0135	0.8160 ± 0.0184
	ERA	0.7907 ± 0.0174	0.7915 ± 0.0146	0.7632 ± 0.0187
	LEV	0.8386 ± 0.0151	0.8327 ± 0.0221	0.8346 ± 0.0160
	CEV	-	0.9214 ± 0.0045	0.9206 ± 0.0059
	DBS	0.8373 ± 0.0426	0.8398 ± 0.0487	0.8520 ± 0.0421
	CPU	0.9360 ± 0.0239	0.9269 ± 0.0311	0.9770 ± 0.0238
	BCC	-	0.7246 ± 0.0446	0.7146 ± 0.0246
	MPG	-	0.8170 ± 0.0295	0.7910 ± 0.0236
50 %	ESL	0.8982 ± 0.0155	0.8982 ± 0.0203	0.9217 ± 0.0163
	MMG	-	0.8290 ± 0.0153	0.8242 ± 0.0152
	ERA	0.8042 ± 0.0137	0.7951 ± 0.0191	0.7658 ± 0.0171
	LEV	0.8554 ± 0.0151	0.8460 ± 0.0221	0.8444 ± 0.0132
	CEV	-	0.9216 ± 0.0067	0.9201 ± 0.0091
80 %	DBS	0.8520 ± 0.0811	0.8712 ± 0.0692	0.8720 ± 0.0501
	CPU	0.9402 ± 0.0315	0.9476 ± 0.0363	0.9848 ± 0.0214
	BCC	-	0.7486 ± 0.0640	0.7087 ± 0.0510
	MPG	-	0.8152 ± 0.0540	0.7920 ± 0.0388
	ESL	0.8992 ± 0.0247	0.9017 ± 0.0276	0.9256 ± 0.0235
	MMG	-	0.8313 ± 0.0271	0.8266 ± 0.0265
	ERA	0.8144 ± 0.0260	0.7970 ± 0.0272	0.7644 ± 0.0292
	LEV	0.8628 ± 0.0232	0.8401 ± 0.0321	0.8428 ± 0.0222
	CEV	-	0.9204 ± 0.0130	0.9201 ± 0.0132

University of Mons - Ecole Centrale Paris

Application on real datasets

	Dataset	MIP MR-SORT	META MR-SORT	LP UTADIS
20 %	CPU ERA	0.7542 ± 0.0506 -	0.7443 ± 0.0559 0.5104 ± 0.0198	0.8679 ± 0.0488 0.4856 ± 0.0169
	LEV CEV	-	$\begin{array}{c} 0.5528 \pm 0.0274 \\ 0.7761 \pm 0.0183 \end{array}$	$\begin{array}{c} 0.5775 \pm 0.0175 \\ 0.7719 \pm 0.0153 \end{array}$
50 %	CPU ERA	-	$\begin{array}{c} 0.8052 \pm 0.0361 \\ 0.5216 \pm 0.0180 \end{array}$	$\begin{array}{c} 0.9340 \pm 0.0266 \\ 0.4833 \pm 0.0171 \end{array}$
	LEV CEV	-	$\begin{array}{c} 0.5751 \pm 0.0230 \\ 0.7833 \pm 0.0180 \end{array}$	$\begin{array}{c} 0.5889 \pm 0.0158 \\ 0.7714 \pm 0.0158 \end{array}$
80 %	CPU ERA	-	$\begin{array}{c} 0.8055 \pm 0.0560 \\ 0.5230 \pm 0.0335 \end{array}$	$\begin{array}{c} 0.9512 \pm 0.0351 \\ 0.4824 \pm 0.0332 \end{array}$
	LEV CEV	-	$\begin{array}{c} 0.5750 \pm 0.0344 \\ 0.7895 \pm 0.0203 \end{array}$	$\begin{array}{c} 0.5933 \pm 0.0305 \\ 0.7717 \pm 0.0259 \end{array}$

Conclusions and further research

- Algorithm able to handle large datasets
- Adapted to the structure of the problem

- Comparison of AVF-Sort and MR-Sort
- Use MR-Sort models with vetoes
- Test the algorithm on other datasets

References I

- Bouyssou, D. and Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories. European Journal of Operational Research, 178(1):246–276.
- Doumpos, M., Marinakis, Y., Marinaki, M., and Zopounidis, C. (2009).

An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2):496–505.

References II

Leroy, A., Mousseau, V., and Pirlot, M. (2011). Learning the parameters of a multiple criteria sorting method. In Brafman, R., Roberts, F., and Tsoukiàs, A., editors, *Algorithmic* Decision Theory, volume 6992 of Lecture Notes in Computer Science, pages 219-233. Springer Berlin / Heidelberg.

Slowinski, R., Greco, S., and Matarazzo, B. (2002).

Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle.

Control and Cybernetics, 31(4):1005-1035.

Tehrani, A. F., Cheng, W., Dembczynski, K., and Hüllermeier, E. (2012).

Learning monotone nonlinear models using the choquet integral. Machine Learning, 89(1-2):183-211.

References III

Yu, W. (1992).

Aide multicritère à la décision dans le cadre de la problématique du tri : méthodes et applications.

PhD thesis, LAMSADE, Université Paris Dauphine, Paris.