UTA-poly and UTADIS-poly: using polynomial marginal utility functions in UTA and UTADIS

Olivier Sobrie ${ }^{1,2}$ - Nicolas Gillis ${ }^{2}$ - Vincent Mousseau ${ }^{1}$ - Marc Pirlot ${ }^{2}$
${ }^{1}$ École Centrale de Paris - Laboratoire de Génie Industriel
${ }^{2}$ University of Mons - Faculty of engineering
July 15, 2015

1 UTA methods

2 Motivations for UTA-poly and UTADIS-poly

3 UTA-poly and UTADIS-poly

4 Experiments

5 Conclusion

Additive utility function model

- A marginal utility function u_{j} is associated to each criterion j
- Marginal utility functions are monotonic
- Marginal utility functions are normalized between 0 and 1, s.t. $u_{j}\left(\underline{g_{j}}\right)=0$ and $u_{j}\left(\overline{g_{j}}\right)=1$
- A weight w_{j} is associated to each criterion j, s.t. $\sum_{j} w_{j}=1$

- Utility of an alternative a :

$$
U(a)=\sum_{j=1}^{n} w_{j} \cdot u_{j}\left(a_{j}\right)
$$

Additive utility function model

- A marginal utility function u_{j} is associated to each criterion j
- Marginal utility functions are monotonic
- Marginal utility functions are normalized between 0 and 1, s.t. $u_{j}\left(\underline{g_{j}}\right)=0$ and $u_{j}\left(\overline{g_{j}}\right)=1$
- A weight w_{j} is associated to each criterion j, s.t. $\sum_{j} w_{j}=1$

- We also have :

$$
u_{j}^{*}(a)=w_{j} \cdot u_{j}\left(a_{j}\right) \text { and } u_{j}^{*}\left(\overline{g_{j}}\right)=w_{j}
$$

- Utility of an alternative a :

$$
U(a)=\sum_{j=1}^{n} w_{j} \cdot u_{j}\left(a_{j}\right)=\sum_{j=1}^{n} u_{j}^{*}\left(a_{j}\right)
$$

UTA : Presentation

- Not easy to elicit directly the marginal utility functions
- Disaggregation procedure proposed by [Jacquet-Lagrèze and Siskos, 1982]
- Utility functions are computed on basis of a ranking given in input
- Linear programming

UTA - Constraints I

- Two type of information (pairwise comparison) :

1. a is preferred to b, i.e. $U(a)>U(b) \Rightarrow(a, b) \in \mathcal{P}$
2. a is indifferent to b, i.e. $U(a)=U(b) \Rightarrow(a, b) \in \mathcal{I}$

- A potential error is introduced for each alternative utility $U(a)$, s.t. $U^{\prime}(a)=U(a)+\sigma^{+}(a)-\sigma^{-}(a)$
- Constraints of the linear program :

$$
\left\{\begin{aligned}
U(a)-U(b)+\sigma^{+}(a)-\sigma^{-}(a) & & \\
-\sigma^{+}(b)+\sigma^{-}(b) & >0 & \forall(a, b) \in \mathcal{P}, \\
U(a)-U(b)+\sigma^{+}(a)-\sigma^{-}(a) & & \\
-\sigma^{+}(b)+\sigma^{-}(b) & =0 & \forall(a, b) \in \mathcal{I}, \\
\sum_{j=1}^{n} u_{j}^{*}\left(\overline{g_{j}}\right) & =1, & \\
\sum_{j=1}^{n} u_{j}^{*}\left(\frac{\left.g_{j}\right)}{}\right. & =0, & \\
\sigma^{+}(a), \sigma^{-}(a) & \geq 0 & \forall a \in A^{*}, \\
u_{j}^{*} & \text { monotonic } & \forall j \in N .
\end{aligned}\right.
$$

UTA - Constraints II

- Monotonicity is ensured by using piecewise linear functions for the marginal utility functions

- Domain of the criterion split in k equal parts
- Position of the g_{j}^{l}, for $I=0, \ldots, k$ fixed a priori (equidistant)
- Marginal utility value of an alternative a :

$$
u_{j}^{*}(a)=u_{j}^{* L-1}+\left(\frac{a_{j}-g_{j}^{L-1}}{g_{j}^{L}-g_{j}^{L-1}}\right)\left(u_{j}^{* L}-u_{j}^{* L-1}\right)
$$

with g_{j}^{L} the first breakpoint s.t. $a_{j} \leq g_{j}^{L}$

UTADIS

- Sorting problems
- Comparison of alternatives to thresholds delimiting the categories
- Disaggregation though linear programming
- Similar approach as for UTA : utility functions are modelled through piecewise linear functions

Motivations for UTA-poly and UTADIS-poly I

Drawbacks of UTA methods

- Marginal utility functions are not natural close to the breakpoints of the piecewise linear functions
- Breakpoints at pre-defined position : limit the flexibility of the model

Existing works

- Bugera, V., Konno, H., and Uryasev, S. (2002). Credit cards scoring with quadratic utility functions. Journal of Multi-Criteria Decision Analysis, 11(4-5):197-211
- Słowínski, R., Greco, S., and Mousseau, V. (2005). Multi-criteria ranking of a finite set of alternatives using ordinal regression and additive utility functions - a new UTA-GMS method.
In Practical Approaches to Multi-Objective Optimization

Motivations for UTA-poly and UTADIS-poly II

UTA-poly and UTADIS-poly

- We propose to replace piecewise linear functions by polynomial ones by using semi-definite programming (SDP)
- Degree of the polynomial chosen a priori

$$
u_{j}^{*}(a)=u_{j}^{*}\left(g_{j}^{1}\right)+\left(\frac{a_{j}-g_{j}^{1}}{g_{j}^{2}-g_{j}^{1}}\right)\left(u_{j}^{* 2}-u_{j}^{* 1}\right)
$$

$$
u_{j}^{*}(a)=p_{0}+p_{1} \cdot a_{j}+p_{2} \cdot a_{j}^{2}+\ldots+p_{D} \cdot a_{j}^{D}
$$

Semi-Definite Programming (SDP) I

Theorem
A polynomial $F(z)$, with $z \in \mathbb{R}^{n}$ is nonnegative if it is possible to decompose it as a sum of squares (SOS) :

$$
F(z)=\sum_{s} f_{s}^{2}(z) \quad \text { with } f_{s}(z) \in \mathbb{R}^{n}
$$

Not every non-negative polynomial is a Sum Of Squares (SOS), but :
Theorem
(Hilbert) A non-negative polynomial in one variable is always a SOS.

Semi-Definite Programming (SDP) II

- Consider the following polynomial of degree D :

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{D} x^{D}=\sum_{i=0}^{D} p_{i} x^{i}
$$

$p(x)$ non-negative \Longleftrightarrow it can be decomposed as a SOS.

- Let $d=\left\lceil\frac{D}{2}\right\rceil, b_{s}^{\top}=\left[b_{s}^{0}, b_{s}^{1}, \ldots, b_{s}^{d}\right]$ and $\bar{x}^{\top}=\left[1, x, \ldots, x^{d}\right]$, the polynomial reads :

$$
\begin{aligned}
p(x) & =\sum_{s} q_{s}^{2}(x)=\sum_{s}\left[\sum_{i=0}^{d} b_{s}^{i} x_{j}^{i}\right]=\sum_{s}\left(b_{s}^{\top} \bar{x}\right)^{2} \\
& =\sum_{s} \bar{x}^{\top} b_{s} b_{s}^{\top} \bar{x}=\bar{x}^{\top}\left[\sum_{s} b_{s} b_{s}^{\top}\right] \bar{x}=\bar{x}^{\top} Q \bar{x}
\end{aligned}
$$

Semi-Definite Programming (SDP) III

$$
p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{D} x^{D}
$$

$$
=\bar{x}^{\top} Q \bar{x}=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{d}
\end{array}\right)^{\top}\left(\begin{array}{ccccc}
q_{0,0} & q_{0,1} & q_{0,2} & \cdots & q_{0, d} \\
q_{1,0} & q_{1,1} & q_{1,2} & \cdots & q_{1, d} \\
q_{2,0} & q_{2,1} & q_{2,2} & \cdots & q_{2, d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{d, 0} & q_{d, 1} & q_{d, 2} & \cdots & q_{d, d}
\end{array}\right)\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{d}
\end{array}\right) .
$$

- $p_{0}, p_{1}, \ldots, p_{D}$ are obtained by summing the off-diagonal entries of Q :

$$
\left\{\begin{array}{l}
p_{0}=q_{0,0}, \\
p_{1}=q_{1,0}+q_{0,1}, \\
p_{2}=q_{2,0}+q_{1,1}+q_{0,2}, \\
\vdots \\
p_{2 d-1}=q_{d, d-1}+q_{d-1, d}, \\
p_{2 d}=q_{d, d}, \text { if } D \text { is odd, we have } p_{2 d}=0 .
\end{array}\right.
$$

UTA-poly and UTADIS-poly

- Marginal utility functions defined as polynomials of degree D :

$$
u_{j}^{*}\left(a_{j}\right)=\sum_{i=0}^{D} p_{j, i} \cdot a_{j}^{i}
$$

- To ensure monotonicity of the function, $u_{j}^{x^{\prime}}\left(a_{j}\right)$ has to be nonnegative.
$\Rightarrow u_{j}^{*^{\prime}}$ should be a SOS :

$$
\begin{aligned}
\frac{\partial u_{j}^{*}}{\partial a_{j}} & =p_{j, 1}+2 p_{j, 2} \cdot a_{j}+3 p_{j, 3} \cdot a_{j}^{2}+\ldots+D p_{j, n} \cdot a_{j}^{D-1} \\
& =\frac{\partial}{\partial a_{j}}\left[{\overline{a_{j}}}^{\top} Q \bar{a}_{j}\right]
\end{aligned}
$$

- Using a SDP solver, we impose Q to be semidefinite positive.

UTA-poly - Example I

	x	y
a^{1}	10	7
a^{2}	6	8
a^{3}	7	5

$$
a^{1} \succ a^{2} \succ a^{3}
$$

- We define $u_{1}^{*}(x)$ and $u_{2}^{*}(y)$ as second degree polynomials :

$$
\begin{aligned}
& u_{1}^{*}(x)=p_{x, 0}+p_{x, 1} \cdot x+p_{x, 2} \cdot x^{2} \\
& u_{2}^{*}(y)=p_{y, 0}+p_{y, 1} \cdot y+p_{y, 2} \cdot y^{2} .
\end{aligned}
$$

- Utilities of a^{1}, a^{2} and a^{3} are given by:

$$
\begin{aligned}
& U\left(a^{1}\right)=p_{x, 0}+10 p_{x, 1}+100 p_{x, 2}+p_{y, 0}+7 p_{y, 1}+49 p_{y, 2}, \\
& U\left(a^{2}\right)=p_{x, 0}+6 p_{x, 1}+36 p_{x, 2}+p_{y, 0}+8 p_{y, 1}+64 p_{y, 2}, \\
& U\left(a^{3}\right)=p_{x, 0}+7 p_{x, 1}+49 p_{x, 2}+p_{y, 0}+5 p_{y, 1}+25 p_{y, 2} .
\end{aligned}
$$

UTA-poly - Example II

- We have $a^{1} \succ a^{2}$ and $a^{2} \succ a^{3}$, which implies :

$$
\left\{\begin{array}{l}
U\left(a^{1}\right)-U\left(a^{2}\right)+\sigma^{+}\left(a^{1}\right)-\sigma^{-}\left(a^{1}\right)-\sigma^{+}\left(a^{2}\right)+\sigma^{-}\left(a^{2}\right)>0, \\
U\left(a^{2}\right)-U\left(a^{3}\right)+\sigma^{+}\left(a^{2}\right)-\sigma^{-}\left(a^{2}\right)-\sigma^{+}\left(a^{1}\right)+\sigma^{-}\left(a^{1}\right)>0 .
\end{array}\right.
$$

- By replacing $U\left(a^{1}\right), U\left(a^{2}\right)$ and $U\left(a^{3}\right)$, we have :

$$
\left\{\begin{aligned}
4 p_{x, 1}+64 p_{x, 2}-p_{y, 1}-15 p_{y, 2} & +\sigma^{+}\left(a^{1}\right)-\sigma^{-}\left(a^{1}\right) \\
& -\sigma^{+}\left(a^{2}\right)+\sigma^{-}\left(a^{2}\right)>0 \\
-p_{x, 1}-13 p_{x, 2}+3 p_{y, 1}+39 p_{y, 2} & +\sigma^{+}\left(a^{2}\right)-\sigma^{-}\left(a^{2}\right) \\
& -\sigma^{+}\left(a^{3}\right)+\sigma^{-}\left(a^{3}\right)>0
\end{aligned}\right.
$$

UTA-poly - Example III

- We impose the derivate of u_{1}^{*} and u_{2}^{*} to be SOS :

$$
\begin{aligned}
\frac{\partial u_{1}^{*}}{\partial x} & =\bar{x}^{\top} Q \bar{x} \\
& =\binom{1}{x}^{\top}\left(\begin{array}{ll}
q_{x, 0,0} & q_{x, 0,1} \\
q_{x, 1,0} & q_{x, 1,1}
\end{array}\right)\binom{1}{x} \\
& =q_{0,0}+\left(q_{0,1}+q_{0,1}\right) x+q_{1,1} x^{2}, \\
\frac{\partial u_{2}^{*}}{\partial y} & =\bar{y}^{\top} R \bar{y} \\
& =r_{0,0}+\left(r_{0,1}+r_{1,0}\right) y+r_{1,1} y^{2} .
\end{aligned}
$$

- Q and R have to be semi-definite positive, in conjunction with :

$$
\left\{\begin{array} { l l }
{ p _ { x , 1 } = q _ { 0 , 1 } + q _ { 1 , 0 } , } \\
{ 2 p _ { x , 2 } } & { = q _ { 1 , 1 } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
p_{y, 1} & =r_{0,1}+r_{1,0} \\
2 p_{y, 2} & =r_{1,1}
\end{array}\right.\right.
$$

UTA-poly - Example IV

- We add normalization constraints :

$$
\left\{\begin{aligned}
p_{x, 0} & =0 \\
p_{y, 0} & =0 \\
10 p_{x, 1}+100 p_{x, 2}+10 p_{y, 1}+100 p_{y, 2} & =1
\end{aligned}\right.
$$

UTA-poly - Example V

- Finally, we obtain the following program :

$$
\min \sigma^{+}\left(a^{1}\right)+\sigma^{-}\left(a^{1}\right)+\sigma^{+}\left(a^{2}\right)+\sigma^{-}\left(a^{2}\right)+\sigma^{+}\left(a^{3}\right)+\sigma^{-}\left(a^{3}\right)
$$

such that :

$$
\left\{\begin{aligned}
4 p_{x, 1}+64 p_{x, 2}-p_{y, 1}-15 p_{y, 2}+\sigma^{+}\left(a^{1}\right)-\sigma^{-}\left(a^{1}\right) & \\
-\sigma^{+}\left(a^{2}\right)+\sigma^{-}\left(a^{2}\right) & >0, \\
-p_{x, 1}-13 p_{x, 2}+3 p_{y, 1}+39 p_{y, 2}+\sigma^{+}\left(a^{2}\right)-\sigma^{-}\left(a^{2}\right) & \\
-\sigma^{+}\left(a^{3}\right)+\sigma^{-}\left(a^{3}\right) & >0, \\
p_{x, 0} & =0 \\
p_{y, 0} & =0, \\
10 p_{x, 1}+100 p_{x, 2}+10 p_{y, 1}+100 p_{y, 2} & =1, \\
p_{x, 1} & =q_{0,1}+q_{1,0}, \\
2 p_{x, 2} & =q_{1,1} \\
p_{y, 1} & =r_{0,1}+r_{1,0} \\
2 p_{y, 2} & =r_{1,1}
\end{aligned}\right.
$$

with :

$$
\left\{\begin{aligned}
Q, R & \geq 0 \\
\sigma^{+}\left(a^{1}\right), \sigma^{-}\left(a^{1}\right), \sigma^{+}\left(a^{2}\right), \sigma^{-}\left(a^{2}\right), \sigma^{+}\left(a^{3}\right), \sigma^{-}\left(a^{3}\right), & \geq 0 .
\end{aligned}\right.
$$

Illustrative example (UTADIS-poly) I

- Evaluation of accommodations for holidays on 3 criteria : price, distance and size.
- 10 categories (from good to bad)
- Consider the following true marginal utility functions

- 200 examples given as input to UTADIS-poly

Illustrative example (UTADIS-poly) II

price

size

distance

$$
\begin{array}{|ccc|}
\hline- \text { real } & ---D=3 & \cdots \cdots \cdot D=6 \\
-\cdots-\cdot D=12 \\
\hline
\end{array}
$$

Computing time

Learning a UTA-poly model from a ranking obtained with UTA

Learning a UTADIS-poly model from assignment examples obtained with UTADIS

Conclusion

- More natural marginal utility functions
- Do not increase computing time
- Some marginal utility functions are difficult to model (step)

Thank you for your attention!

References I

固 Bugera, V., Konno, H., and Uryasev, S. (2002).
Credit cards scoring with quadratic utility functions. Journal of Multi-Criteria Decision Analysis, 11(4-5) :197-211.

嗇 Jacquet-Lagrèze, E. and Siskos, Y. (1982).
Assessing a set of additive utility functions for multicriteria decision making : the UTA method.
European Journal of Operational Research, 10 :151-164.

- Słowínski, R., Greco, S., and Mousseau, V. (2005).

Multi-criteria ranking of a finite set of alternatives using ordinal regression and additive utility functions - a new UTA-GMS method. In Practical Approaches to Multi-Objective Optimization.

