Integration of decision aid tools in a Geographical Information System

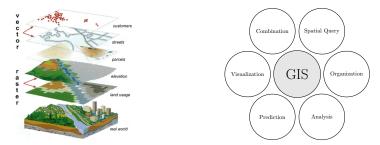
Olivier Sobrie and Marc Pirlot

University of Mons Faculty of engineering

October 7, 2011

<u>U</u>MONS

1 Introduction


- 2 Methodology
- 3 Implementation

4 Inference

- Demonstration 5
- 6 Conclusion

æ

GIS and MCDA

- GIS are used in lot of application from land suitability problem to geomarketing
- Since 90's, works about GIS and MCDA
- ► Not a lot of work based on ELECTRE methods
- ELECTRE methods fit well for ordinal problems

GIS and MCDA

Limitations of GIS-MCDA works according to [Chakhar, 2006] :

- Weak coupling
- One MCDA method integrated (Single criterion synthesis)
- Choice of the MCDA method
- User's knowledge of GIS and MCDA

GIS and MCDA

Limitations of GIS-MCDA works according to [Chakhar, 2006] :

- Weak coupling
- One MCDA method integrated (Single criterion synthesis)
- Choice of the MCDA method
- User's knowledge of GIS and MCDA

We add an extra one :

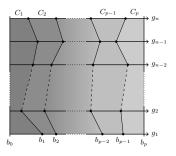
A good number of GIS-MCDA tools were abandoned or never surpassed the stage of prototype. Moreover it has been done in commercial GIS.

Objectives of our GIS-MCDA integration

First objectives

- ELECTRE TRI implementation
- Full integration
- User friendly interface
- Open Source GIS (and implementation)

Objectives of our GIS-MCDA integration


First objectives

- ELECTRE TRI implementation
- Full integration
- User friendly interface
- Open Source GIS (and implementation)

Second objectives

- Learning of parameters
- Implementation of a XMCDA webservice
- Experimentations
- Coupling with the ELECTRE TRI plugin

ELECTRE TRI

Parameters

- weights
- profiles
- credibility threshold

Approach

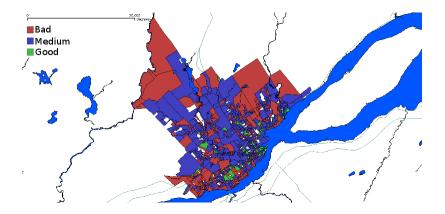
. . .

- Classical
- Bouyssou-Marchant

Major interests

- Judge an action independently from the others
- Allow to consider more actions than other ELECTRE methods
- Reference values fixed : profiles

Application : Densification of Quebec city


Subject

Quebec city wants to create a program to densify its population in the centrum and around the small crown. The program consists to build rental properties at low prices for young families in empty areas.

Objectives

- Densify central sectors where there are more public transports
- Sustain a good social diversity by choosing in priority the sectors where young people and immigrants are not well represented
- Favor sectors with a lot of small shops

Application : Densification of Quebec city
Application : Densification of Quebec city
Decision map

Application : Densification of Quebec city Definition of the problem

Actions

786 districts (polygons)

Criteria

- Density of 0-14 years old [%] (min)
- Density of shops [shops/ha] (max)
- Density of people [residents/ha] (min)
- Level of public transports (average) [bus/hour] (max)
- Ratio of immigrants [%] (min)

Application : Densification of Quebec city Performance table

Bit Ver løyer lyere syster gefete upper lyere syster				9	uantum GIS 1.5.0-Tethy	s - quebec					-
Description Construction Construction </th <th>Edit View Layer Pi</th> <th>ugins Vector CadTools</th> <th>i <u>H</u>elp SelectPlus</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Edit View Layer Pi	ugins Vector CadTools	i <u>H</u> elp SelectPlus								
Description Control CPU IP Ed. We have IP IP <tdi< th=""><th>📾 🖼 😫 /</th><th>3 A 🖌 🖌 🖌</th><th>a 👍 🗛 🔊</th><th>N R R 1</th><th><u> </u></th><th>🗃 🛒 🛒 -</th><th>6 T 0</th><th>0 0 0 0</th><th>D Q 🖲 🗩 👩</th><th></th><th></th></tdi<>	📾 🖼 😫 /	3 A 🖌 🖌 🖌	a 👍 🗛 🔊	N R R 1	<u> </u>	🗃 🛒 🛒 -	6 T 0	0 0 0 0	D Q 🖲 🗩 👩		
Image: Section 1 <			v 🔽 🖉 🔉	<u>v v v </u>			A. 177 . A.	30 20 20	s 🚾 🔨 // 🖸		
Image: Constraint of the second of		Densificat	tion.xls - OpenOffice.or	g Calc	- 0	R					
Mail 10 Amail 10 <	Eile Edit View	Insert Format Tools	Data Window Help			×					
Mail 10 Amail 10 <						» 🕰 😚 🛔	5 ×2 m	12 12 33	C C C X		
Modu Construction		1 🔽 🎽 🖨 🖉 🖓) 🔤 🕷 🗆 🖬 🖓 🦉	a 🔊 t 🖉 t 🚳	3 🐝 🐝 🔍 💽		.8 %8 %0	20 30 20	• D = 0 = 4 D = 10		
105 105 102 <td>Arial</td> <td>× 10</td> <td></td> <td>E E 🖬 🖩 🗮 I .</td> <td>56 4% 12 20</td> <td>»</td> <td></td> <td></td> <td>(</td> <td>10,00</td> <td>00 decare</td>	Arial	× 10		E E 🖬 🖩 🗮 I .	56 4% 12 20	»			(10,00	00 decare
Image: Constraints Constraints Description Description Description 1 0.000 0.000 0.000 0.000 0.000 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 3 0.000 0.000 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000 0.000 0.000 0.000 1000 0.000 0.000 0.000<						- I			1'		
1 Comment Density operation Density operation Particle production 2 Maximum 0.00 0.00000 0.0000 0.00000 <td>A5</td> <td>• $f_{\rm CO} \Sigma = 24$</td> <td>210032</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>	A5	• $f_{\rm CO} \Sigma = 24$	210032						2		
1 1	A	В	C	D	E	A /			[
1 Marcine 1320 100 3044 0.55 1 Marcine 1327 1327 1327 1327 1 Marcine 1327 1327 131 1 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127	1	Pourcentage 0-14	Commerce Den	sité population [Desserte TC Por						
Total Alegories 1 + 2 + 2 + 2 + 3 + 3 + 3 + 4 + 5 + 4					h	1		~	,		
Image: 100 min						1.7		- A \			1
10 12/100 20 20 20 20 13 10 12/100 40 10 40 13 13 10 12/100 40 10 40 10 10 10 12/100 40 10 40 10 10 10 10 12/100 40 10 40 10			99.90				A			1	
155 242088 -14 1 266 130 157 242088 -44 1 268 130 157 242088 -44 1 268 210 157 242088 -44 0 307 443 157 242088 -44 0 307 444 157 242088 -44 0 307 444 157 242088 -44 0 302 2420 026 157 242088 -44 64 4217 621 4208 046 157 242088 -44 64 64 218 047 157 242088 -45 64 64 047 047 047 157 24208 -45 64 307 438 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 <td></td> <td></td> <td></td> <td>-576</td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td>A</td> <td></td>				-576			/			A	
135 142 12 2000 2.5 135 142 12 2000 2.5 135 142 14 0 14 12 14 135 142 14 0 14	354 24230385						× 🖌			12	
177 242038 -34 0 -352 12 177 242038 -34 0 -352 12 177 242038 -44 0 -352 12 177 242038 -44 0 -352 12 177 242038 -44 0 -352 12 177 242038 -14 0 -377 343 177 242038 -14 0.4 -47 -37 1707 242038 -14 0.4 -47 -37 1707 242038 -14 0.4 -47 -37 1707 242038 -14 0.4 -47 -37 1707 242038 -14 0.4 -37 -33 1707 242038 -14 0.4 -37 -33 1707 242038 -14 0.4 -37 -33 1707 242038 -14 0.4 -37	355 24230386						A			1	1
133 242038 -14 0 -307 14.3 135 242038 -14 0 -307 14.3 135 242038 -14 0 -307 14.3 135 242038 -14 0 -305 0.5 0.7 136 242038 -14 0 -305 0.5 0.7 136 242038 -14 6.4 -407 1.3 0.7 137 242038 -14 6.4 4.17 6.2 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 <t< td=""><td>356 24230387</td><td></td><td></td><td></td><td></td><td></td><td>8 V</td><td></td><td></td><td></td><td></td></t<>	356 24230387						8 V				
Disp Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< td=""><td>357 24230388</td><td></td><td></td><td></td><td></td><td></td><td>$I \cap$</td><td>a l</td><td>42</td><td>. //</td><td></td></thcont<></thcontrol<></thcontrol<>	357 24230388						$I \cap$	a l	42	. //	
100 223039 -11 2 3384 2 11 101 243039 -16 2 384 2 1 102 243039 -16 0 -3984 0 1 102 243039 -16 0 -3984 0 1 1 102 243039 -16 0 -3984 0 1 </td <td>359 24230390</td> <td></td> <td></td> <td></td> <td></td> <td>32 85</td> <td>スノ</td> <td>100</td> <td></td> <td></td> <td></td>	359 24230390					32 85	スノ	100			
120 242030 -14 0 -378 101 130 242030 -14 0 -378 101 130 242030 -16 16 -327 39 130 242030 -16 16 -327 39 130 242030 -16 16 -327 39 131 242030 -12 2.5 -3207 3.9 131 242030 -12 2.5 -3207 3.9 132 242030 -13 6.4 -327 3.9 132 242040 -16 6.4 -327 3.9 132 242040 -16 6.4 -327 3.9 132 242040 -16 6.3 -177 3.9 132 242040 -16 0 -177 3.9 132 242040 -16 0 -177 3.9 132 242040 -16 0 -177	360 24230391					- Ve Jack	4 S Z	7 - Z A M			
100 100 <td>361 24230392</td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>NAC</td> <td>$(\land \lambda) \in$</td> <td>8 °K //</td> <td></td> <td></td>	361 24230392					11	NAC	$(\land \lambda) \in$	8 °K //		
125 1242008 18 18 327 3.9 126 1242008 18 18 327 3.9 126 1242008 12 12.3 397 13.7 127 1242008 12 2.4 326 4.3 127 1242040 14 6.6 327 3.9 127 1242040 15 6.3 327 3.5 127 1242040 15 6.3 327 3.5 127 1242040 15 6.3 327 3.5 127 1242040 15 19.7 4270 10.9 127 1242040 15 19.7 4270 10.9 127 1242040 15 19.7 4279 15.9 127 1242040 16 1 17.7 14.9 127 1242040 15 17.7 14.9 14.9 127 1242040 16 1 17	362 24230393					3	メンシム	LI V DEREG		6	
125 1242008 18 18 327 3.9 126 1242008 18 18 327 3.9 126 1242008 12 12.3 397 13.7 127 1242008 12 2.4 326 4.3 127 1242040 14 6.6 327 3.9 127 1242040 15 6.3 327 3.5 127 1242040 15 6.3 327 3.5 127 1242040 15 6.3 327 3.5 127 1242040 15 19.7 4270 10.9 127 1242040 15 19.7 4270 10.9 127 1242040 15 19.7 4279 15.9 127 1242040 16 1 17.7 14.9 127 1242040 15 17.7 14.9 14.9 127 1242040 16 1 17	363 24230394					1125 1	~V 3638	2 Liter		/	
100 100 1	364 24230390					A A	L Veres	1 8 130157	T Hard 1		
1 1 2 2 3 3 4 9 3 3 1	366 24230397					A SX	A V2298	82 X X 3	CRA CAN		
150 2420401 -17 6.4 -468 3.44 1717 2420401 -16 6.9 -577 4.54 1717 2420401 -16 6.9 -577 4.54 1717 2420401 -16 2.2 -577 3.54 1717 2420401 -16 2.2 -577 3.54 1717 2420401 -16 1.9 -154 1.51 1717 2420401 -16 1.9 -154 1.51 1717 2420401 -16 1.0 -144 1.51 1717 2420401 -16 1.0 -144 1.51 1717 2420401 -16 1.0 -146 -17 1717 2420411 -16 1.7 -17 1.4 1717 2420411 -17 -17 1.4 -17 -14 1717 240411.2 -17 -17 1.4 -14 -14 -14 -14	367 24230398	-12	13.2	-3367	4.37	Mr. Mart	79 - KAU	NA DUA	HAR /		
171 1232 <th1< td=""><td>368 24230399</td><td></td><td></td><td></td><td></td><td>ALC MA</td><td>K 888</td><td>X. 4. X. 4. C. X</td><td></td><td></td><td>-</td></th1<>	368 24230399					ALC MA	K 888	X. 4. X. 4. C. X			-
171 1232 <th1< td=""><td>369 24230401</td><td></td><td></td><td></td><td></td><td>2831.23</td><td>LAN SUL</td><td>1834 State</td><td></td><td></td><td></td></th1<>	369 24230401					2831.23	LAN SUL	1834 State			
171 2420008 -15 167 -3770 6770 1212 2420008 -16 1077 240001 -46 1077 1777 2420010 -40 1 -4718 2.02 1077 107	370 24230403					No las	1 10 100	Plant Barry 7	\sim		
171 2420008 -15 167 -3770 6770 1212 2420008 -16 1077 240001 -46 1077 1777 2420010 -40 1 -4718 2.02 1077 107	372 24230404					- all s	- Var	CORR R /			
171 2420008 -15 167 -3770 6770 1212 2420008 -16 1077 240001 -46 1077 1777 2420010 -40 1 -4718 2.02 1077 107	373 24230406					N 9000	BUND		m		_
TYT Exception 15 0 1000 456 1000 1	374 24230408	-15		-3770	6.70		any 15		7		
1777 2420411 -0.9 1 -1718 2.02 1777 2420411 -0.07 1.06 -17 -0.07 1770 2420411 -0.07 1.06 -17 -0.07 1770 2420411 -0.07 1.06 -0.07 1.06 1771 240411 -0.07 1.06 -0.07 1.06 1771 240411 -0.07 1.06 -0.07 1.06 1771 240411 -0.07 -0.07 -0.07 -0.07 1771 240411 -0.07 -0.07 -0.07 -0.07 1771 240411 -0.07 -0.07 -0.07 -0.07 1771 240411 -0.07 -0.07 -0.07 -0.07 1771 240411 -0.07 -0.07 -0.07 -0.07 -0.07 1701 500 -0.07 -0.07 -0.07 -0.07 -0.07	375 24230409					AN AN	and the second	Crack of		\sim	
1781 34200412 -16 1.7 -1027 1.45 16 Actions Memory Manual Science Actions 500 5000000000000000000000000000000000000			0			A Carl	Condition of	5-93 V			
Sheet 1 /2 PageStyle_Actions 5T0 Sum=24210032 0	378 24230411		17			- KARA	maria	AND A			
Sheet 1/2 PageStyle_Actions STD Sum-24210032 @ @ @ 100%				*1021		× × ×	1 minda	EXAL 1	\land / \frown		
						11/2	400	and U	$/ \times$		
	Sheet 1 / 2 PageSt	tyle_Actions	S1D Su	n=24210032	 		1 1. 1883	1005			
					mer	× & &	86. 38				
				~	\sim	S VANA	CONTRACTOR OF	ren			
© Coordinate: 246706.5179880 Bcale 1117765596314 ◎ ♥					~ ~ ^	A MARCAN AND	ATTA ATTA	- / 7	`		

▲ロト ▲圖ト ▲画ト ▲画ト 三画 - のへで

Strategy of integration

Reference

▶ [Chakhar, 2006]

Coupling strategy

- [Malczewski, 2006] reports only 10 % of works using a strategy of full integration of the MCDA method in the GIS
- Full integration

Actions and criteria

- Vector layer
- actions = points, lines, polygons
- criteria = attributes

Strategy to build the decision map

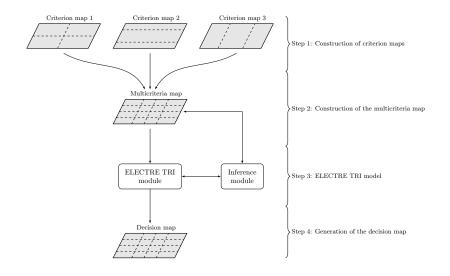


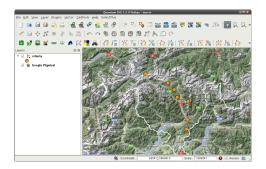
Image: Image:

Choice of the GIS

Requirements

- Open Source GIS and implementation
- User friendly interface
- Support of vector layer
- With map algebra tools

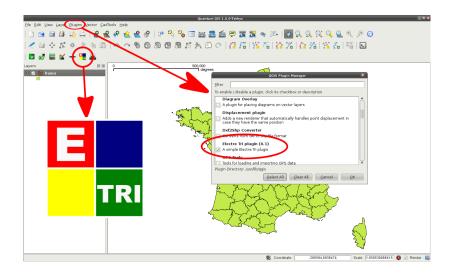
Choice of the GIS

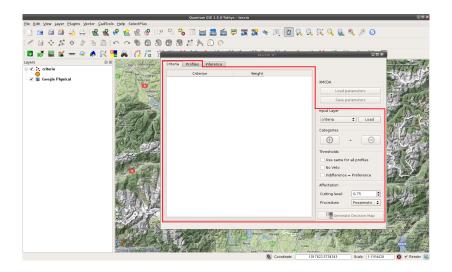

Requirements

- Open Source GIS and implementation
- User friendly interface
- Support of vector layer
- With map algebra tools

Lot of open source GIS

- GRASS, PostGIS, Quantum GIS
- http://opensourcegis.org/


Quantum GIS


Characteristics

- Great portability (Linux, Windows, Mac OS)
- Plugin mechanism
- Lot of functionnalities (GRASS, map algebra, ...)
- User-friendly interface

Full integration

User interface

イロト 不得下 イヨト イヨト

User interface

	Electre Tri	
Criteria Profiles Inference		
Criterion	Weight	
✓ PRICE	Min \$ 25.00	XMCDA
✓ TRANSPORT	Min \$ 45.00	Load parameters
C ENVIRONMEN	Max 🗢 10.00	Save parameters
RESIDENTS	Max \$ 12.00	
	Max \$ 8.00	Input Layer
Name	Max 🗢 10.0	criteria 🗘 Load
		Categories
		Э з 😑
		Thresholds
		Use same for all profiles
		No Veto
		Indifference = Preference
		Affectation
		Cutting level: 0.75
		Procedure: Pessimistic 🖨
		Generate Decision Map

æ

User interface

				Electre Tri		- 0 ×
irite	eria Profiles	Inference				-
	PRICE	TRANSPORT	ENVIRONMEN	RESIDENTS	COMPETITIO	
L	100.0	1000.0	4.0	4.0	15.0	XMCDA
2	50.0	500.0	7.0	7.0	20.0	Load parameters
						Save parameters
						Input Layer
						criteria 🗘 Load
						Categories
4					Þ	Эз (
Inc	difference Pr	reference Vet	0			Thresholds
	PRICE	TRANSPORT	ENVIRONMEN	RESIDENTS	COMPETIT	Use same for all profiles
1	15.0	80.0	1.0	0.5	i	No Veto
2	15.0	80.0	1.0	0.5	;	Indifference = Preference
						Affectation
						Cutting level: 0.75
						Procedure: Pessimistic 🗢
•					Þ	Generate Decision Map

æ

XMCDA webservice

Characteristics

- Based on [Leroy, 2010]
- ► Learning of ELECTRE TRI Bouyssou-Marchant parameters
- Accept non-admissible set of learning alternatives
- Maximize number of compatible alternatives
- MIP problem
- Use GLPK

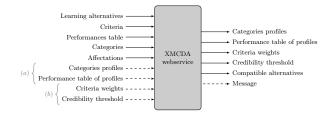
ELECTRE TRI BM inference experimentations

First conclusions

- Lot of learning alternatives needed to get good results
- Difficult to get good set of params when learning set not completely compatible with ELECTRE TRI model
- Computing time becomes huge when number of learning alternatives increases

ELECTRE TRI BM inference experimentations

First conclusions

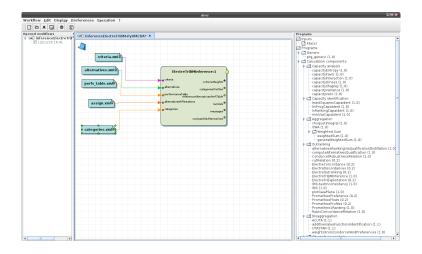

- Lot of learning alternatives needed to get good results
- Difficult to get good set of params when learning set not completely compatible with ELECTRE TRI model
- Computing time becomes huge when number of learning alternatives increases

New experimentations

- Two step inference
- Partial inference
- Improve objective of the inference program

Inference XMCDA webservice

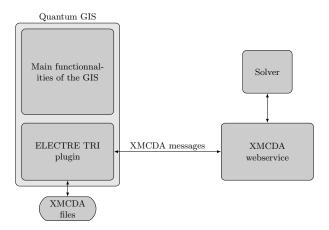
ELECTRE TRI BM inference webservice update

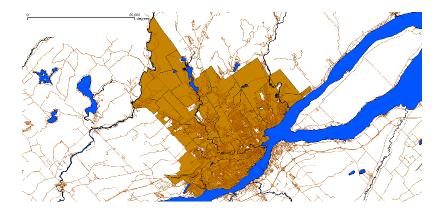


Characteristics

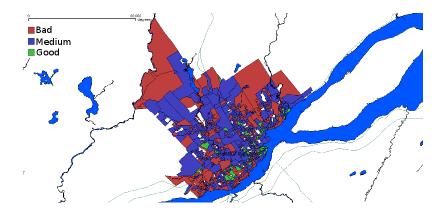
- Two entries added to do partial inference of the weights and lambda threshold
- Two entries added to do partial inference of the profiles

Inference Webservice available in diviz

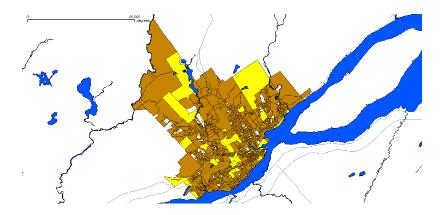

Webservice available in diviz

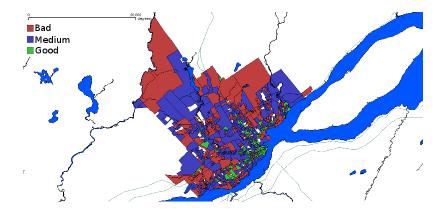

3

Inference Coupling of XMCDA webservice with Quantum GIS ELECTRE TRI plugin


Coupling of XMCDA webservice with Quantum GIS ELECTRE TRI plugin

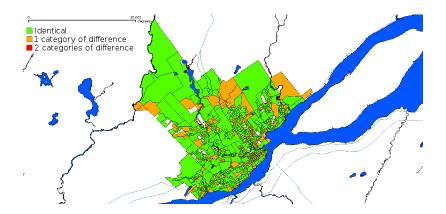
It's time for the demo...


Original model

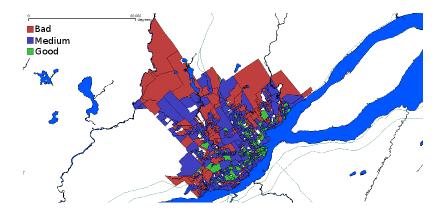

э

<ロト (型)

Actions of reference

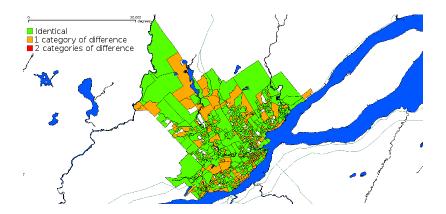

Global inference

э

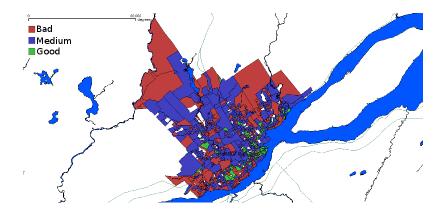

< 口 > < 同

Global inference (difference)

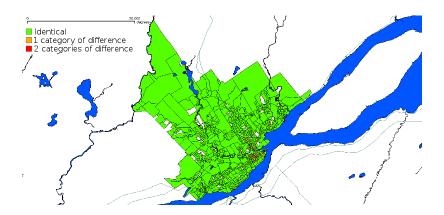
\pm 29% of invalid affectations


Profiles inference

э


< □ > < 同 >

Profiles inference (difference)


\pm 33% of invalid affectations

Weights and lambda inference

University of Mons

Weights and lambda inference (difference)

\pm 6% of invalid affectations

Conclusion

Conclusion

- ► Full open source solution running on several OS
- ► Limitations of GIS-MCDA overcome by the full integration
- Several spatial decision problems treated

Conclusion

Conclusion

- Full open source solution running on several OS
- Limitations of GIS-MCDA overcome by the full integration
- Several spatial decision problems treated

Ideas for improvements

- Improve userfriendlyness of the plugin
- Improve the inference procedure
- Better take into account geographical aspects
- Algorithm to choose an optimal learning set

Thank you for your attention !

References

Chakhar, S. (2006).

Cartographie décisionnelle multicritère : Formalisation et implémentation informatique.

PhD thesis, Université de Paris Dauphine - D.F.R. Sciences des organisations.

Leroy, A. (2010).

Apprentissage des paramètres d'une méthode multicritère de tri ordonné.

Master's thesis, Université de Mons - Faculté Polytechnique.

Malczewski, J. (2006).

GIS-based multicriteria decision analysis : a survey of the literature. International Journal of Geographical Information Science, 20(7) :703–726.