Learning the parameters of a multiple criteria sorting method from large sets of assignment examples

Olivier Sobrie^{1,2} - Vincent Mousseau¹ - Marc Pirlot²

¹École Centrale de Paris - Laboratoire de Génie Industriel ²University of Mons - Faculty of engineering

June 21, 2013

- 1 Introduction
- 2 Algorithm
- 3 Experimentations
- 4 Conclusion

Introductory example

Application: Lung cancer

Categories:

C₃: No cancer

C₂: Curable cancer

C₁: Incurable cancer

 $C_3 \succ C_2 \succ C_1$

- 9394 patients analyzed
- Monotone attributes (number of cigarettes per day, age, ...)
- Output variable: no cancer, cancer, incurable cancer
- Predict the risk to get a lung cancer for other patients on basis of their attributes

MR-Sort procedure

Main characteristics

- Sorting procedure
- ▶ Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

Parameters

- \triangleright Profiles' performances ($b_{h,i}$ for h = 1, ..., p - 1; j = 1, ..., n
- Criteria weights (w_i for n = 1, ..., n
- Majority threshold (λ)

MR-Sort procedure

Main characteristics

- Sorting procedure
- ▶ Simplified version of the ELECTRE TRI procedure [Yu, 1992]
- Axioms based [Slowinski et al., 2002, Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b]

Parameters

Inferring the parameters

What already exists to infer MR-Sort parameters?

- Mixed Integer Program learning the parameters of an MR-Sort model [Leroy et al., 2011]
- ▶ Metaheuristic to learn the parameters of an ELECTRE TRI model [Doumpos et al., 2009]
- ▶ Not suitable for large problems : computing time becomes huge when the number of parameters or examples increases

Our objective

- ▶ Learn a MR-Sort model from a large set of assignment examples
- Efficient algorithm (i.e. can handle 1000 alternatives, 10 criteria, 5 categories)

Principe of our metaheuristic

Input parameters

- Assignment examples
- ▶ Performances of the examples on the *n* criteria

Objective

▶ Learn an MR-Sort model which is compatible with the highest number of assignment examples, i.e. maximize the classification accuracy,

$$\textit{CA} = \frac{\text{Number of examples correctly restored}}{\text{Total number of examples}}$$

Difficulty

▶ Learn all the parameters of an MR-Sort model at the same time

Metaheuristic to learn all the parameters

Algorithm

Generate a population of N_{model} models with profiles initialized with a heuristic

repeat

for all model M of the set do

Learn the weights and majority threshold with a linear program, using the current profiles

Adjust the profiles with a heuristic N_{it} times, using the current weights and threshold.

end for

Reinitialize the $\left| \frac{N_{model}}{2} \right|$ models giving the worst CAuntil Stopping criterion is met

Stopping criterion

Stopping criterion is met when one model has a CA equal to 1 or when the algorithm has run N_o times.

Profiles initialization

Principe

- By a heuristic
- ▶ On each criterion i, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if $w_i=1$.
- ▶ Take the probability to belong to a category into account

Example 1: Where should the profile be set on criterion *j*?

Category	$P(a_i \in C_h)$	
C_1 C_2	$\frac{\frac{1}{2}}{\frac{1}{2}}$	
$C_2 \succ C_1$		
$a_{3,j} <$	$b_h \le a_{4,j}$	

Profiles initialization

Principe

- By a heuristic
- ▶ On each criterion i, give to the profile a performance such that CA would be max for the alternatives belonging to h and h+1 if $w_i=1$.
- ▶ Take the probability to belong to a category into account

Example 2 : Where should the profile be set on criterion j?

Category	$P(a_i \in C_h)$	
C_1 C_2	$\frac{2}{3}$ $\frac{1}{3}$	
$C_2 \succ C_1$		
$a_{3,j} <$	$b_h \le a_{4,j}$	

Learning the weights and the majority threshold

Principe

- Maximizing the classification accuracy of the model
- Using a linear program with no binary variables

Linear program

Objective:
$$\min \sum_{a_i \in A} (x'_i + y'_i)$$
 (1)

$$\sum_{\forall j | a_i S_j b_{h-1}} w_j - x_i + x_i' = \lambda \qquad \forall a_i \in A_h, h = \{2, ..., p-1\}$$
 (2)

$$\sum_{\forall j | a_i S_i b_h} w_j + y_i - y_i' = \lambda - \delta \qquad \forall a_i \in A_h, h = \{1, ..., p - 2\}$$
 (3)

$$\sum_{i=1}^{n} w_i = 1 \tag{4}$$

Case 1 : Alternative a_1 classified in C_2 instead of C_1 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

Case 1 : Alternative a_1 classified in C_2 instead of C_1 ($C_2 \succ C_1$)

$$\textit{w}_{\textit{j}} = 0.2 \text{ for } \textit{j} = 1,...,5 \, ; \, \lambda = 0.8$$

Case 2 : Alternative a_2 classified in C_1 instead of C_2 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \lambda = 0.8$$

- ► a₂ is classified by the **DM** into category C_2
- ▶ a₂ is classified by the model into category C_1
- \triangleright a_2 doesn't outrank b_1
- Profile too high on one or several criteria (in blue)
- b_0 If profile moved by $\delta_{b_1,2,4}$ on g_4 and/or by $\delta_{b_1,2,5}$ on g_5 , the alternative will be rightly classified

Case 2 : Alternative a_2 classified in C_1 instead of C_2 ($C_2 \succ C_1$)

$$w_j = 0.2 \text{ for } j = 1, ..., 5; \ \lambda = 0.8$$

- ► a₂ is classified by the **DM** into category C_2
- ▶ a₂ is classified by the model into category C_1
- ▶ a₂ doesn't outrank b₁
- Profile too high on one or several criteria (in blue)
- b_0 If profile moved by $\delta_{b_1,2,4}$ on g_4 and/or by $\delta_{b_1,2,5}$ on g_5 , the alternative will be rightly classified

 $V_{h,i}^{+\delta}$ (resp. $V_{h,i}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

▶ $V_{h,j}^{+\delta}$ (resp. $V_{h,j}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

▶ $V_{h,j}^{+\delta}$ (resp. $V_{h,j}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h by $+\delta$ (resp. $-\delta$) on j results in a correct assignment.

 $W_{h,j}^{+\delta}$ (resp. $W_{h,j}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.

▶ $W_{h,j}^{+\delta}$ (resp. $W_{h,j}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j strengthens the criteria coalition in favor of the correct classification but will not by itself result in a correct assignment.

 $ightharpoonup Q_{h\,i}^{+\delta}$ (resp. $Q_{h\,i}^{-\delta}$) : the sets of alternatives correctly classified in \mathcal{C}_{h+1} (resp. C_{h+1}) for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on jresults in a misclassification.

 $ightharpoonup Q_{h,i}^{+\delta}$ (resp. $Q_{h,i}^{-\delta}$): the sets of alternatives correctly classified in C_{h+1} (resp. C_{h+1}) for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on jresults in a misclassification.

▶ $R_{h,j}^{+\delta}$ (resp. $R_{h,j}^{-\delta}$): the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.

 $ightharpoonup R_{h,i}^{+\delta}$ (resp. $R_{h,i}^{-\delta}$) : the sets of alternatives misclassified in C_{h+1} instead of C_h (resp. C_h instead of C_{h+1}), for which moving the profile b_h of $+\delta$ (resp. $-\delta$) on j weakens the criteria coalition in favor of the correct classification but does not induce misclassification by itself.

$$P(b_{1,j}^{+\delta}) = \frac{k_V|V_{1,j}^{+\delta}| + k_W|W_{1,j}^{+\delta}| + k_T|T_{1,j}^{+\delta}|}{d_V|V_{1,j}^{+\delta}| + d_W|W_{1,j}^{+\delta}| + d_T|T_{1,j}^{+\delta}| + d_Q|Q_{1,j}^{+\delta}| + d_R|R_{1,j}^{+\delta}|}$$

with : $k_V = 2$, $k_W = 1$, $k_T = 0.1$, $d_V = d_W = d_T = 1$, $d_Q = 5$, $d_R = 1$

Overview of the complete algorithm

```
for all profile b_h do
  for all criterion j chosen randomly do
     Choose, in a randomized manner, a set of positions in the
     interval [b_{h-1,i}, b_{h+1,i}]
     Select the one such that P(b_{h,i}^{\Delta}) is maximal
     Draw uniformly a random number r from the interval [0, 1].
    if r \leq P(b_{h,i}^{\Delta}) then
       Move b_{h,j} to the position corresponding to b_{h,j} + \Delta
       Update the alternatives assignment
     end if
  end for
end for
```

Experimentations

- 1. What's the efficiency of the algorithm?
- 2. How much alternatives are required to learn a good model?
- 3. What's the capability of the algorithm to restore assignments when there are errors in the examples?
- 4. How the algorithm behaves on real datasets?

Algorithm efficiency

- ► Random model M generated
- ▶ Learning set : random alternatives assigned through the model M
- ▶ Model M' learned with the metaheuristic from the learning set

Model retrieval

- Random model M generated
- Learning set: random alternatives assigned through model M
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M'

Tolerance for errors

- Random model M generated
- \blacktriangleright Learning set : random alternatives assigned through model M + errors
- ▶ Model M' learned with the metaheuristic from the learning set

Tolerance for errors

- Random model M generated
- Learning set: random alternatives assigned through model M + errors
- Model M' learned with the metaheuristic from the learning set
- Generalization set: random alternatives assigned through M and M

Application on real datasets

Dataset	#instances	#attributes	#categories
DBS	120	8	2
CPU	209	6	4
BCC	286	7	2
MPG	392	7	36
ESL	488	4	9
MMG	961	5	2
ERA	1000	4	4
LEV	1000	4	5
CEV	1728	6	4

- ▶ Instances split in two parts : learning and generalization sets
- Binarization of the categories

Source: [Tehrani et al., 2012]

Application on real datasets - Binarized categories

Learning set	Dataset	MIP MR-SORT	META MR-SORT	LP UTADIS
	DB\$ CPU	0.9861 ± 0.0531 0.9980 ± 0.0198	$0.9586 \pm 0.0410 \\ 0.9883 \pm 0.0200$	0.9804 ± 0.0365 1.0000 ± 0.0000
	BCC	0.8527 ± 0.0421	0.8060 ± 0.0559	0.7982 ± 0.0581
•/	MPG	0.8752 ± 0.0313	0.8564 ± 0.0406	0.8509 ± 0.0414
20 %	ESL	0.9444 ± 0.0178	0.9345 ± 0.0213	0.9625 ± 0.0196
	MMG	0.8796 ± 0.0215	0.8704 ± 0.0232	0.8477 ± 0.0284
	ERA	0.8253 ± 0.0221	0.8218 ± 0.0211	0.7974 ± 0.0304
	LEV	0.8759 ± 0.0172	0.8690 ± 0.0220	0.8790 ± 0.0235
	CEV	-	0.9240 ± 0.0117	0.9230 ± 0.0123
	DBS	0.9601 ± 0.0369	0.9381 ± 0.0276	0.9380 ± 0.0312
	CPU	0.9863 ± 0.0144	0.9755 ± 0.0157	1.0000 ± 0.0000
	BCC	-	0.7714 ± 0.0272	0.7590 ± 0.0246
	MPG	-	0.8357 ± 0.0269	0.8190 ± 0.0246
50 %	ESL	0.9300 ± 0.0107	0.9241 ± 0.0116	0.9467 ± 0.0113
	MMG	-	0.8546 ± 0.0137	0.8395 ± 0.0155
	ERA	0.8157 ± 0.0106	0.8144 ± 0.0114	0.7841 ± 0.0200
	LEV	0.8668 ± 0.0100	0.8566 ± 0.0171	0.8604 ± 0.0137
	CEV	-	0.9232 ± 0.0067	0.9222 ± 0.0071
	DBS	0.9464 ± 0.0162	0.9348 ± 0.0134	0.9206 ± 0.0170
80 %	CPU	0.9797 ± 0.0123	0.9744 ± 0.0066	1.0000 ± 0.0000
	BCC	-	0.7672 ± 0.0170	0.7467 ± 0.0164
	MPG	-	0.8315 ± 0.0249	0.8124 ± 0.0132
	ESL	0.9231 ± 0.0058	0.9205 ± 0.0062	0.9436 ± 0.0068
	MMG	-	0.8486 ± 0.0079	0.8384 ± 0.0082
	ERA	0.8135 ± 0.0065	0.8097 ± 0.0067	0.7781 ± 0.0148
	LEV	0.8655 ± 0.0058	0.8466 ± 0.0270	0.8551 ± 0.0083
	CEV	=	0.9229 ± 0.0032	0.9226 ± 0.0034

Application on real datasets

	Dataset	MIP MR-SORT	META MR-SORT	LP UTADIS
20 %	CPU ERA LEV	0.7542 ± 0.0506	0.7443 ± 0.0559 0.5104 ± 0.0198 0.5528 ± 0.0274	0.8679 ± 0.0488 0.4856 ± 0.0169 0.5775 ± 0.0175
	CEV	-	0.7761 ± 0.0183	0.7719 ± 0.0173 0.7719 ± 0.0153
50 %	CPU ERA LEV	-	$\begin{array}{c} 0.8052 \pm 0.0361 \\ 0.5216 \pm 0.0180 \\ 0.5751 \pm 0.0230 \end{array}$	$\begin{array}{c} 0.9340 \pm 0.0266 \\ 0.4833 \pm 0.0171 \\ 0.5889 \pm 0.0158 \end{array}$
	CEV CPU FRA	-	0.7833 ± 0.0180 0.8055 ± 0.0560	0.7714 ± 0.0158 0.9512 ± 0.0351 0.4824 ± 0.0332
80 %	LEV CEV	- - -	0.5230 ± 0.0335 0.5750 ± 0.0344 0.7895 ± 0.0203	0.4824 ± 0.0332 0.5933 ± 0.0305 0.7717 ± 0.0259

Conclusions and further research

- Algorithm able to handle large datasets
- Adapted to the structure of the problem

- Comparison of AVF-Sort and MR-Sort
- Use MR-Sort models with vetoes
- Test the algorithm on other datasets

References I

- Bouyssou, D. and Marchant, T. (2007a). An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories. European Journal of Operational Research, 178(1):217–245.
- Bouyssou, D. and Marchant, T. (2007b). An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories. European Journal of Operational Research, 178(1):246–276.
- Doumpos, M., Marinakis, Y., Marinaki, M., and Zopounidis, C. (2009).

An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2):496–505.

References II

Leroy, A., Mousseau, V., and Pirlot, M. (2011). Learning the parameters of a multiple criteria sorting method. In Brafman, R., Roberts, F., and Tsoukiàs, A., editors, *Algorithmic* Decision Theory, volume 6992 of Lecture Notes in Computer Science, pages 219-233. Springer Berlin / Heidelberg.

Slowinski, R., Greco, S., and Matarazzo, B. (2002).

Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle.

Control and Cybernetics, 31(4):1005-1035.

Tehrani, A. F., Cheng, W., Dembczynski, K., and Hüllermeier, E. (2012).

Learning monotone nonlinear models using the choquet integral. Machine Learning, 89(1-2):183-211.

References III

Yu, W. (1992).

Aide multicritère à la décision dans le cadre de la problématique du tri : méthodes et applications.

PhD thesis, LAMSADE, Université Paris Dauphine, Paris.