Integration of decision aid tools in a Geographical Information System

Olivier Sobrie

University of Mons Faculty of engineering

June 22, 2011

- Introduction
- 2 Methodology
- 3 Implementation
- 4 Inference
- 5 Demonstration
- 6 Conclusion

GIS and MCDA

- ► GIS are used in lot of application from land suitability problem to geomarketing
- ► Since 90's, works about GIS and MCDA
- ▶ Not a lot of work based on ELECTRE methods
- ► ELECTRE methods fit well for ordinal problems

GIS and MCDA

Limitations of GIS-MCDA works according to S. Chakhar:

- Weak coupling
- One MCDA method integrated (Single criterion synthesis)
- Choice of the MCDA method
- User's knowledge of GIS and MCDA

GIS and MCDA

Limitations of GIS-MCDA works according to S. Chakhar:

- Weak coupling
- One MCDA method integrated (Single criterion synthesis)
- Choice of the MCDA method
- User's knowledge of GIS and MCDA

We add an extra one:

A good number of GIS-MCDA tools were abandoned or never surpassed the stage of prototype. Moreover it has been done in commercial GIS.

Objectives of our GIS-MCDA integration

First objectives

- ▶ ELECTRE TRI implementation
- Tight coupling
- User friendly interface
- Open Source GIS (and implementation)

Objectives of our GIS-MCDA integration

First objectives

- ▶ ELECTRE TRI implementation
- Tight coupling
- User friendly interface
- Open Source GIS (and implementation)

Second objectives

- ► Learning of parameters
- ▶ Implementation of a XMCDA webservice
- Experimentations
- ► Coupling with the ELECTRE TRI plugin

Introduction Methodology Implementation Inference Demonstration Conclusion

ELECTRE TRI

Parameters

- weights
- profiles
- credibility threshold
- **.**...

Approach

- Classical
- Bouyssou-Marchant

Major interests

- ▶ Judge an action independently from the others
- ▶ Allow to consider more actions than other ELECTRE methods
- ► Reference values fixed : profiles

Application : Densification of Quebec city

Subject

Quebec city wants to create a program to densify its population in the centrum and around the small crown. The program consists to build rental properties at low prices for young families in empty areas.

Objectives

- Densify central sectors where there are more public transports
- Sustain a good social diversity by choosing in priority the sectors where young people and immigrants are not well represented
- ► Favor sectors with a lot of small shops

Application : Densification of Quebec city Decision map

Application : Densification of Quebec city Definition of the problem

Actions

786 districts (polygons)

Criteria

- ▶ Density of 0-14 years old [%] (min)
- Density of shops [shops/ha] (max)
- ► Density of people [residents/ha] (min)
- ► Level of public transports (average) [bus/hour] (max)
- ► Ratio of immigrants [%] (min)

Application : Densification of Quebec city Performance table

Strategy of integration

Reference

► Chakhar's thesis (2006)

Coupling strategy

- Malczewski (2006) reports only 10 % of works using a strategy of tight coupling of the MCDA method in the GIS
- Tight coupling

Actions and criteria

- Vector layer
- ► actions = points, lines, polygons
- ▶ criteria = attributes

Strategy to build the decision map

Choice of the GIS

Requirements

- ▶ Open Source GIS and implementation
- User friendly interface
- Support of vector layer
- ► With map algebra tools

Choice of the GIS

Requirements

- ▶ Open Source GIS and implementation
- User friendly interface
- Support of vector layer
- With map algebra tools

Lot of open source GIS

- ► GRASS, PostGIS, Quantum GIS
- http://opensourcegis.org/

Quantum GIS

Characteristics

- Great portability (Linux, Windows, Mac OS)
- ▶ Plugin mechanism
- Lot of functionnalities (GRASS, map algebra, ...)
- User-friendly interface

ELECTRE TRI plugin

ELECTRE TRI plugin User interface

ELECTRE TRI plugin User interface

ELECTRE TRI plugin User interface

XMCDA webservice

Characteristics

- ▶ Based on A. Leroy master thesis (2010)
- ▶ Learning of ELECTRE TRI Bouyssou-Marchant parameters
- Accept non-admissible set of learning alternatives
- Maximize number of compatible alternatives
- MIP problem
- ▶ Use GLPK

ELECTRE TRI BM inference experimentations

First conclusions

- ▶ Lot of learning alternatives needed to get good results
- Difficult to get good set of params when learning set not completely compatible with ELECTRE TRI model
- Computing time becomes huge when number of learning alternatives increases

ELECTRE TRI BM inference experimentations

First conclusions

- ▶ Lot of learning alternatives needed to get good results
- Difficult to get good set of params when learning set not completely compatible with ELECTRE TRI model
- Computing time becomes huge when number of learning alternatives increases

New experimentations

- ► Two step inference
- Partial inference
- ▶ Improve objective of the inference program

ELECTRE TRI BM inference webservice update

Characteristics

- ► Two entries added to do partial inference of the weights and lambda threshold
- ► Two entries added to do partial inference of the profiles

Webservice available in diviz

Coupling of XMCDA webservice with Quantum GIS ELECTRE TRI plugin

It's time for the demo...

Original model

Actions of reference

Global inference

Global inference (difference)

 \pm 29% of invalid affectations

Profiles inference

Profiles inference (difference)

 \pm 33% of invalid affectations

Weights and lambda inference

Weights and lambda inference (difference)

 \pm 6% of invalid affectations

Conclusion

Conclusion

- Full open source solution running on several OS
- Good reviews during the two Decision Deck workshops
- Limitations of GIS-MCDA overcome
- Several spatial decision problems treated

Conclusion

Conclusion

- Full open source solution running on several OS
- Good reviews during the two Decision Deck workshops
- Limitations of GIS-MCDA overcome
- Several spatial decision problems treated

Ideas for improvements

- Plot of the profiles in the plugin
- Add the possibility to choose a spatial entity by clicking on it in the inference module
- Replacement of GLPK by SCIP as solver in webservice
- Metaheuristic to infer parameters
- ▶ Algorithm to choose an optimal learning set

Thank you for your attention!